
Wonderful World of Composer

With <3 from SymfonyCasts

Chapter 1: Composer

COMPOSER: BECAUSE USING EXTERNAL LIBRARIES SHOULD BE FUN!COMPOSER: BECAUSE USING EXTERNAL LIBRARIES SHOULD BE FUN!¶¶

Welcome to the brand new world of PHP with Composer!

One of the great things about PHP is that we’re huge! But how big are we really? PHP consists of a lot of successful, but
extremely isolated libraries, like Wordpress, Drupal, Joomla and all of the PHP frameworks like Symfony and Zend.
Historically, these different groups share almost nothing, which means that in reality, we’re all pretty small islands. That’s
right, even though we’re the biggest group in the world, we’ve somehow turned ourselves into the underdogs.

Well, it’s time for a whole new beautiful era where your community is all of the PHP world.

PHP developers haven’t typically shared code or used outside libraries because, well, it sucked! To use just one outside
library, you’d need to tackle at least three major issues:

1) First, how do I autoload the PHP classes in the library? Autoloading is the background machine that makes it possible to
reference PHP classes without using require or include statements. When I bring in outside code, I either need to figure out
which files to include or how to configure that library’s autoloader.

2) Second, we need to know if this library depends on any other libraries. And if it does, that’s yet another library I need to
download and configure.

3) Finally, how should I store the library in my project? Should I use SVN externals? Git submodules? Just commit the whole
darn thing into my project?

The answer to these 3 problems is Composer. Want to do something crazy like bring Symfony’s Finder component into a
Drupal project? We’re about to learn just how easy that is. But wait! Before you non-Drupal people run off, the process and
code you’ll see have nothing to do with Drupal. This is one of the first great things about using Composer: the process for
using external libraries is the same now in any PHP project.

Our Project¶

Move into the directory where your project lives. Our first goal is to use a standalone Symfony component called “Finder” to
list all the files in a directory and print them onto the page. Just to make things really exciting, we’re going to do this inside a
custom Drupal module.

To start, I’ve created a function called get_current_files deep inside my project, which returns an array of filenames:

// sites/all/modules/list_files/list_files.module
// ...

function get_current_files()
{
 return array('foo');
}

Tip

I’ve already created a module called list_files and enabled it before starting the tutorial.

I’ve also gone far enough to print these onto the screen. Ok great, now let’s get to work!

Installation¶

The first thing you’ll need to do is download the Composer executable. Go to GetComposer.org, click “Download”, then copy
one of the two code blocks depending if you have curl installed.

http://php.net/manual/en/function.spl-autoload-register.php
http://getcomposer.org

$ curl -s https://getcomposer.org/installer | php

Composer itself is just an executable file, and this fancy bit of code downloads the file and makes sure your system is setup
to use Composer. If you see any errors or warnings during this step, you may need to tweak your PHP configuration.

If everything went ok, you’ll have a brand new composer.phar sitting at the root of your project. Ok, let’s put this guy to work!
Execute the composer script by typing php composer.phar :

$ php composer.phar

This shows you a list of all the available composer commands: we’ll get to know some of these in the next few minutes.

Creating the composer.json File¶

So far, we have a composer.phar , but that’s it! Composer’s main job is to download third-party libraries into a vendor/
directory in your project. To tell Composer which libraries you need, your project needs to have a composer.json
configuration file. Instead of creating this file by hand, let’s use the first Composer command: init .

$ php composer.phar init

The init command will ask you several questions about your project, but unless you’re planning to open-source it, don’t
worry too much about your answers. Finally, it’ll ask you to interactively define your dependencies. By “dependencies”,
Composer is asking you which third-party libraries you want to include in your project. To start, we’re going to add a
Symfony2 component called Finder - and you can find its documentation at symfony.com .

At the prompt, simply type “finder” and wait for the results. Behind the scenes, Composer is searching against a giant central
repository of packages called “Packagist”, which you can search directly at packagist.org. In the language of Composer, a
package is just an individual directory that you want to download into your project. A typical package contains PHP classes,
but it can really contain anything.

Each package has a unique name, and your first job is to find the name of the one you need. Ideally, the name is included in
the documentation for the library, but even if its not, you can often find it just by searching. On Packagist, searching for “finder”
reveals a package called symfony/finder , which is definitely the right one!

Back at the terminal, our search for “finder” has returned a bunch of results including many versions of symfony/finder . The
second thing we need to figure out is which version we want. The safest choice is to choose the latest stable release, which
should follow the X.X.X format. In our case, this is v2.1.2 . If a version ends in -dev , it’s a development branch, which may be
stable or unstable based on the library. The dev-master version is special, and it always means the latest, bleeding-edge
code. If you use a lesser-known package, dev-master may be your only option.

Let’s choose to install v2.1.2 . When it asks you to install “dev dependencies” interactively, choose no. You probably won’t
need to worry about dev dependencies, but if you’re curious about them, check out Composer’s documentation. Finally,
confirm generation and add vendor/ to your .gitignore file if you’re storing your project with git:

.gitignore
/vendor/

The end-product of the init command is the new composer.json file that’s now in your project. Open it and check out the
require key: this is really the only important part of this file right now and it simply tells Composer which packages your
project needs. We could have created this file by hand - the init task is just there for convenience.

http://packagist.org
http://getcomposer.org/doc/04-schema.md#require-dev

{
 "name": "weaverryan/drupal",
 "require": {
 "symfony/finder": "v2.1.2"
 },
 "authors": [
 {
 "name": "Ryan Weaver",
 "email": "ryan@thatsquality.com"
 }
]
}

Using the “install” command¶

At this point, we’ve downloaded the Composer executable and created the composer.json config file. To actually put
Composer to work, run php composer.phar install . This is the most important command: it reads the composer.json file and
downloads all the needed libraries into the vendor directory:

$ php composer.phar install

And look, a vendor directory!

vendor/
 composer/
 symfony/
 finder/
 Symfony/...

It contains a symfony directory that holds the Finder library and a few other things that help with autoloading - which is one of
the most powerful features of Composer.

Autoloading¶

Now that Composer has downloaded the Finder library, let’s use it! To keep things simple, I’ll paste in some Finder code that
looks for all gif files that have been modified within the past day:

// sites/all/modules/list_files/list_files.module
// ...

/**
 * A utility function to return the array of current SplFileInfo objects
 */
function get_current_files()
{
 // the "files" directory
 $dir = drupal_realpath(file_default_scheme() . '://');

 $finder = new \Symfony\Component\Finder\Finder();
 $finder->in($dir)
 ->name('*.gif')
 ->date('since 1 day ago')
 ;
 $files = array();
 foreach ($finder as $file) {
 $files[] = $file->getFilename();
 }

 return $files;
}

This code should work, but when we refresh the page, we get a class not found error!

Class SymfonyComponentFinderFinder not found.

Of course! Even though Composer downloaded the Finder library for us, we can’t use any of its PHP classes without
including them.

Fortunately, Composer solves this for us - through autoloading. The exact details of how autoloading works goes beyond this
screencast, but the important thing is that Composer helps us out. To use Composer’s autoloader, simply include the
vendor/autoload.php file somewhere in your project. For now, let’s put it right inside this function:

// sites/all/modules/list_files/list_files.module
// ...

function get_current_files()
{
 require __DIR__.'/../../../../vendor/autoload.php';

 // ...
}

Refresh the page again. It works! By including Composer’s autoloader, the Finder library - as well as the PHP classes for any
other libraries we included via Composer - are made available to us automatically.

To make our third-party classes available anywhere, it would be even better to include the autoload file in some central,
bootstrap file in your project. For Drupal, this might be the settings.php file:

// sites/default/settings.php
require __DIR__.'/../../vendor/autoload.php';

// ... the rest of the file

When we refresh, everything still works.

The composer.lock file and “install” versus “update”¶

Things are going so well that I think we should add another library! So let’s get crazy! Head back to packagist.org and find a
library symfony/filesystem . To tell Composer that we want this package, just edit the composer.json by hand, add a second
entry under the require with the name of the library. To make things more interesting, let’s use the 2.1.x-dev version, which
will give us the latest commit on the 2.1 branch:

{
 "name": "weaverryan/drupal",
 "require": {
 "symfony/finder": "v2.1.2",
 "symfony/filesystem": "2.1.x-dev"
 },
 "authors": [
 {
 "name": "Ryan Weaver",
 "email": "ryan@thatsquality.com"
 }
]
}

Next, we need to tell Composer to re-read this file and download the new library.

Before, we used the install command to do this. But if you try that command now, it prints out a few lines, but doesn’t actually
do anything. Why not?

does not download the new library :/
$ php composer.phar install

When it comes to downloading the libraries we need, composer actually has two different commands: install and update .

When we ran the install command earlier, one of the things it did was create a composer.lock file that recorded the exact
versions of all libraries that it downloaded at that exact moment.

Normally, the install command actually ignores the composer.json file and reads all of the information from this lock file
instead. If you make a change to composer.json and run php composer.phar install , that change won’t be used. The lock file is
important, because if multiple developers are using a project, each one can run php composer.phar install and receive
identical versions of all libraries, even if new commits have been added to them.

In fact, the only time that the install command reads the composer.json file is when you first start the project, because the lock
file doesn’t exist yet.

In this one case, install acts exactly like the update command, which always ignores the lock file and reads the
composer.json file instead. This checks and potentially upgrades all the libraries in composer.json and updates composer.lock
when it finishes.

What this ultimately means is that you should use a simple workflow. Unless you’re adding a new library or intentionally
upgrading something, always use composer.phar install .

Using the update Command¶

When you do need to add a new library or upgrade something. Use composer.phar update . You can be even more precise by
calling update and passing it the name of the library you’re updating. By doing this, Composer will only update that library,
instead of all of them.

$ php composer.phar update symfony/filesystem

Icing in the Cake: The require Command¶

Also, Composer has a cool shortcut command for adding new libraries into your project:

$ php composer.phar require

Tip

You can use the require command to search for a library. In this example, I searched for the doctrine/dbal package and added it.

With the require command, you can search for the package you need and Composer will automatically update your
composer.json for you and run the update command to download the library. In this case, when I included the doctrine/dbal
package, an extra packaged called doctrine/common was downloaded. This is dependency management in action.
Composer is smart enough to know that doctrine/dbal depends on doctrine/common and it downloads it for you. Woo!

Version Control¶

The lock file is especially important if you have multiple developers so that you can be sure that each person has identical
vendor libraries. To make this possible, commit both your composer.json file and your composer.lock file:

$ git add composer.json
$ git add composer.lock
$ git add .gitignore
$ git add sites

Typically composer.phar is ignored, since each developer can download it individually.

Now, let’s pretend like we’re a new developer that’s pulling down the codebase.

$ cd ..
$ git clone drupal drupal2
$ cd drupal2

Notice that the project doesn’t have a vendor/ directory yet, because we didn’t commit the vendor files. In fact, we ignored the
vendor directory in git, because Composer can populate it for us.

I’ll copy in the composer.phar file from the previous directory and then run php composer.phar install .

$ cp ../drupal/composer.phar .
$ php composer.phar install

This reads the composer.lock file and downloads everything we need into the vendor/ directory. And just like that, your new
developer has a functional project!

Conclusion¶

There’s a lot more that Composer can do, but you already understand how to find libraries, manage your composer.json file,
use Composer’s autoloader and download the external libraries with the update or install commands.

If you’d like to learn more, check out the documentation at GetComposer.org. One interesting topic is scripts - which are
callbacks that are executed before or after packages are installed. Other important topics include the dump-autoload
command, “dev dependencies”, minimum stability, and installing Composer globally. If you want to start your Symfony project
using Composer checkout our latest version of Getting Started in Symfony. Good luck and See ya next time!

http://getcomposer.org
http://getcomposer.org/doc/articles/scripts.md
http://getcomposer.org/doc/03-cli.md#dump-autoload

	Wonderful World of Composer
	With <3 from SymfonyCasts
	Chapter 1: Composer

	COMPOSER: BECAUSE USING EXTERNAL LIBRARIES SHOULD BE FUN!¶
	Our Project¶
	Installation¶
	Creating the composer.json File¶
	Using the “install” command¶
	Autoloading¶
	The composer.lock file and “install” versus “update”¶
	Using the update Command¶
	Icing in the Cake: The require Command¶

	Version Control¶
	Conclusion¶

