
Dependency Injection and the art of
services and containers

With <3 from SymfonyCasts

Chapter 1: Dependency Injection

Hi guys! In this tutorial, we're going to talk about dependency injection, services, and dependency injection containers by
looking at a simple one called Pimple. The great news is that understanding these things isn't hard, but it can dramatically
increase the quality and maintainability of the code you write.

As always, we'll be coding with a real example. Recently, we noticed that a lot of really nice rich people have been emailing
us trying to give away their money. In this tutorial, we're going to create a simple app to help these fine people, we're calling it
SendMoneyToStrangers.com.

I've already bootstrapped a small app, which you can download. It uses an Sqlite database, so make sure you have it
installed, then chmod 777 the data directory and run a script that creates some dummy data for us:

$ chmod -R 777 data/
$ php data/setupDb.php

The app is really simple:

 25 lines 25 lines app.phpapp.php

... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

It queries the database, then delivers emails to each person using some SmtpMailer class:

require __DIR__.'/vendor/autoload.php';

use DiDemo\Mailer\SmtpMailer;

$dsn = 'sqlite:'.__DIR__.'/data/database.sqlite';

$pdo = new PDO($dsn);

$mailer = new SmtpMailer('smtp.SendMoneyToStrangers.com', 'smtpuser', 'smtppass', '465');

$sql = 'SELECT * FROM people_to_spam';

foreach ($pdo->query($sql) as $row) {

 $mailer->sendMessage(

 $row['email'],

 'Yay! We want to send you money for no reason!',

 sprintf(<<<EOF

Hi %s! We've decided that we want to send you money for no reason!

Please forward us all your personal information so we can make a deposit and don't ask any questions!

EOF

 , $row['name']),

 'YourTrustedFriend@SendMoneyToStrangers.com'

);

}

 60 lines 60 lines src/DiDemo/Mailer/SmtpMailer.phpsrc/DiDemo/Mailer/SmtpMailer.php

... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

... lines 26 - 33

34

35

... lines 36 - 58

59

60

You could use any mailer library here, and I've made this class fake the sending of emails for simplicity. Instead, it just logs
details to a file:

namespace DiDemo\Mailer;

/**

 * Sends emails via SMTP

 */

class SmtpMailer

{

 private $hostname;

 private $user;

 private $pass;

 private $port;

 public function __construct($hostname, $user, $pass, $port)

 {

 $this->hostname = $hostname;

 $this->user = $user;

 $this->pass = $pass;

 $this->port = $port;

 }

 public function sendMessage($recipientEmail, $subject, $message, $from)

 {

 }

}

 60 lines 60 lines src/DiDemo/Mailer/SmtpMailer.phpsrc/DiDemo/Mailer/SmtpMailer.php

... lines 1 - 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Tip

We're using Composer for autoloading files in our src/ directory with the following composer.json:

 11 lines 11 lines composer.jsoncomposer.json

1

... lines 2 - 6

7

8

9

10

Tail the log file:

$ tail -f logs/mail.log

Then run the app via php app.php from the command line:

$ php app.php

You'll see two emails are sent to two lucky people.

 public function sendMessage($recipientEmail, $subject, $message, $from)

 {

 // dummy implementation - this class is just used as an example

 // hack - just log something so we can see it

 $logPath = __DIR__.'/../../../logs/mail.log';

 $logLines = array();

 $logLines[] = sprintf(

 '[%s][%s:%s@%s:%s][From: %s][To: %s][Subject: %s]',

 date('Y-m-d H:i:s'),

 $this->user,

 $this->pass,

 $this->hostname,

 $this->port,

 $from,

 $recipientEmail,

 $subject

);

 $logLines[] = '---------------';

 $logLines[] = $message;

 $logLines[] = '---------------';

 $fh = fopen($logPath, 'a');

 fwrite($fh, implode("\n", $logLines)."\n");

 // end hack

 }

{

 "autoload": {

 "psr-4": { "": "src/" }

 }

}

https://knpuniversity.com/screencast/composer

Chapter 2: Services and Dependency Injection

Our app is small now, but as it grows, the app.php file will get harder and harder to read. The best way to fix this is to
separate each different chunk of functionality into different PHP classes and methods. Each of these classes is called a
"service" and the whole idea is sometimes called Service-Oriented Architecture.

Create a new file in src/DiDemo called FriendHarvester.php, which will be responsible for sending the email to every lucky
person in the database:

 11 lines 11 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 2

3

4

5

6

... lines 7 - 10

11

Add the namespace so that it follows the directory structure and give it an emailFriends method:

 11 lines 11 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 6

7

8

9

10

Copy in all of our logic into this new method:

 28 lines 28 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

... lines 27 - 28

Go Deeper!

To learn more about PHP namespaces, check out our free PHP Namespaces in 120 Seconds tutorial

namespace DiDemo;

class FriendHarvester

{

}

 public function emailFriends()

 {

 }

 $mailer = new SmtpMailer('smtp.SendMoneyToStrangers.com', 'smtpuser', 'smtppass', '465');

 $sql = 'SELECT * FROM people_to_spam';

 foreach ($pdo->query($sql) as $row) {

 $mailer->sendMessage(

 $row['email'],

 'Yay! We want to send you money for no reason!',

 sprintf(<<<EOF

Hi %s! We've decided that we want to send you money for no reason!

Please forward us all your personal information so we can make a deposit and don't ask any questions!

EOF

 , $row['name']),

 'YourTrustedFriend@SendMoneyToStrangers.com'

);

 }

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://knpuniversity.com/screencast/php-namespaces-in-120-seconds

Tip

The namespace follows the directory structure so the the class is automatically autoloaded by Composer's autoloader.
For more on how this all works, see Autoloading in PHP and the PSR-0 Standard.

And just like that, you've created your first service! Roughly speaking, a service is any PHP class that performs an action.
Since this sends emails to our new soon-to-be-rich friends, it's a service.

Tip

An example of a PHP class that's not a service would be something that simply holds data, like a Blog class, with title,
author and body fields. These are sometimes called "Model objects".

The app.php code gets pretty simple now: just instantiate the FriendHarvester and call the method:

 13 lines 13 lines app.phpapp.php

... lines 1 - 5

6

... lines 7 - 10

11

12

But when we try it:

$ php app.php

We get a huge error!

Once we've moved the code, we don't have access to the PDO object anymore. So how can we get it?

Accessing External Objects from a Service

This is our first important crossroads. There are a few cheating ways to do this, like using the dreaded global keyword:

 30 lines 30 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 8

9

10

11

12

... lines 13 - 28

29

Don't use this. You could also make the $pdo variable available statically, by creating some class and then reference it:

 19 lines 19 lines app.phpapp.php

... lines 1 - 10

11

12

13

14

15

16

17

... lines 18 - 19

use DiDemo\FriendHarvester;

$friendHarvester = new FriendHarvester();

$friendHarvester->emailFriends();

 public function emailFriends()

 {

 // NOOOOOOOO!!!!

 global $pdo;

 }

class Registry

{

 static public $pdo;

}

Registry::$pdo = $pdo;

$friendHarvester = new FriendHarvester();

http://phpmaster.com/autoloading-and-the-psr-0-standard/

 30 lines 30 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 8

9

10

11

12

... lines 13 - 28

29

The problem with both approaches is that our FriendHarvester has to assume the $pdo variable has actually been set and is
available. Or to say it differently, when you use this class, you need to make sure any global or static variables it needs are
setup. And the only way to know what the class needs is to scan the file looking for global or static variable calls. This makes
FriendHarvester harder to understand and maintain, and much harder to test.

Our Friend Dependency Injection

Let's get rid of all of that and do this right.

Since FriendHarvester needs the PDO object, add a __construct() method with it as the first argument. Set the value to a new
private property and update our code to use it:

 35 lines 35 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

... lines 18 - 20

21

... lines 22 - 32

33

34

35

The FriendHarvester now makes a lot of sense: whoever instantiates it must pass us a $pdo variable. Inside this class, we
don't care how this will happen, we just know that it will, and we can make use of it.

Tip

You can also type-hint the argument, which is a great practice. We'll talk more about this later:

public function __construct(\PDO $pdo)

This very simple idea is called Dependency Injection, and you just nailed it! Dependency injection means that if a class
needs an object or some configuration, we force that information to be passed into that class, instead of reaching outside of it
by using a global or static variable.

Back in app.php, we now need to explicitly pass the PDO object when instantiating the FriendHarvester:

 public function emailFriends()

 {

 // Still NOOOOOOOO!!!!

 $pdo = \Registry::$pdo;

 }

class FriendHarvester

{

 private $pdo;

 public function __construct($pdo)

 {

 $this->pdo = $pdo;

 }

 public function emailFriends()

 {

 foreach ($this->pdo->query($sql) as $row) {

 }

 }

}

http://en.wikipedia.org/wiki/Dependency_injection

 13 lines 13 lines app.phpapp.php

... lines 1 - 10

11

... lines 12 - 13

Run it:

$ php app.php

Everything works exactly like before, except that we've moved our logic into a service, which makes it testable, reusable, and
much more understandable for two reasons.

First, the class and method names (FriendHarvester::emailFriends()) serve as documentation for what our code does.
Second, because we're using dependency injection, it's clear what our service might do, because we can see what outside
things it needs.

$friendHarvester = new FriendHarvester($pdo);

Chapter 3: Injecting Config & Services and using Interfaces

We've already created our first service and used dependency injection, we're even closer to getting this money out! One
problem with the FriendHarvester is that we've hardcoded the SMTP configuration inside of it:

 35 lines 35 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 15

16

17

18

... lines 19 - 33

34

What if we want to re-use this class with a different configuration? Or what if our beta and production setups use different
SMTP servers? Right now, both are impossible!

Injecting Configuration

When we realized that FriendHarvester needed the PDO object, we injected it via the constructor. The same rule applies to
configuration. Add a second constructor argument, which will be an array of SMTP config and update the code to use it:

 43 lines 43 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

... lines 27 - 41

42

43

Back in app.php, pass the array when creating FriendHarvester:

 public function emailFriends()

 {

 $mailer = new SmtpMailer('smtp.SendMoneyToStrangers.com', 'smtpuser', 'smtppass', '465');

 }

class FriendHarvester

{

 private $pdo;

 private $smtpConfig;

 public function __construct($pdo, array $smtpConfig)

 {

 $this->pdo = $pdo;

 $this->smtpConfig = $smtpConfig;

 }

 public function emailFriends()

 {

 $mailer = new SmtpMailer(

 $this->smtpConfig['server'],

 $this->smtpConfig['user'],

 $this->smtpConfig['password'],

 $this->smtpConfig['port']

);

 }

}

 18 lines 18 lines app.phpapp.php

... lines 1 - 10

11

12

13

14

15

16

... lines 17 - 18

When we try it:

$ php app.php

It still works! Our class is more flexible now, but, let's level up again!

Injecting the Whole Mailer

We can now configure the FriendHarvester with different SMTP settings, but what if we wanted to change how mails are sent
entirely, like from SMTP to sendmail? And what if we needed to use the mailer object somewhere else in our app? Right
now, we would need to create it anywhere we need it, since it's buried inside FriendHarvester.

In fact, FriendHarvester doesn't really care how we're sending emails, it only cares that it has an SmtpMailer object so that it
can call sendMessage(). So like with the PDO object, it's a dependency. Refactor our class to pass in the whole SmtpMailer
object instead of just its configuration:

 36 lines 36 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

... line 21

22

23

... lines 24 - 32

33

34

35

36

Update app.php to create the mailer object:

$friendHarvester = new FriendHarvester($pdo, array(

 'server' => 'smtp.SendMoneyToStrangers.com',

 'user' => 'smtpuser',

 'password' => 'smtppass',

 'port' => '465'

));

class FriendHarvester

{

 private $pdo;

 private $mailer;

 public function __construct($pdo, $mailer)

 {

 $this->pdo = $pdo;

 $this->mailer = $mailer;

 }

 public function emailFriends()

 {

 foreach ($this->pdo->query($sql) as $row) {

 $this->mailer->sendMessage(

);

 }

 }

}

 20 lines 20 lines app.phpapp.php

... lines 1 - 10

11

12

13

14

15

16

17

18

... lines 19 - 20

Try it out to make sure it still works:

$ php app.php

We would hate for our friends to miss this opportunity!

Once again, this makes the FriendHarvester even more flexible and readable, and will also make re-using the mailer
possible. As a general rule, it's almost always better to inject a service into another than to create it internally. When you're in
a service, think twice before using the new keyword, unless you're instantiating a simple object that exists just to hold data as
opposed to doing some job (i.e. a "model object").

Type-Hinting

One thing we've neglected to do is type-hint our two constructor arguments. Let's do it now:

 36 lines 36 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 6

7

8

... lines 9 - 12

13

... lines 14 - 35

36

This is totally optional, but has a bunch of benefits. First, if you pass something else in, you'll get a much clearer error
message. Second, it documents the class even further. A developer now knows exactly what methods she can call on these
objects. And third, if you use an IDE, this gives you auto-completion! Type-hinting is optional, but I highly recommend it.

Adding an Interface

Right now we're injecting an SmtpMailer. But in reality, FriendHarvester only cares that the mailer has a sendMessage()
method on it. But even if we had another class with an identical method, like SendMailMailer, for example, we couldn't use it
because of the specific type-hint.

To make this more awesome, create a new MailerInterface.php file, which holds an interface with the single send method that
all mailers must have:

 8 lines 8 lines src/DiDemo/Mailer/MailerInterface.phpsrc/DiDemo/Mailer/MailerInterface.php

... lines 1 - 2

3

4

5

6

7

8

Update SmtpMailer to implement the interface and change the type-hint in FriendHarvester as well:

$mailer = new SmtpMailer(

 'smtp.SendMoneyToStrangers.com',

 'smtpuser',

 'smtppass',

 '465'

);

$friendHarvester = new FriendHarvester($pdo, $mailer);

class FriendHarvester

{

 public function __construct(\PDO $pdo, SmtpMailer $mailer)

}

namespace DiDemo\Mailer;

interface MailerInterface

{

 public function sendMessage($recipientEmail, $subject, $message, $from);

}

 60 lines 60 lines src/DiDemo/Mailer/SmtpMailer.phpsrc/DiDemo/Mailer/SmtpMailer.php

... lines 1 - 7

8

9

... lines 10 - 59

60

 36 lines 36 lines src/DiDemo/FriendHarvester.phpsrc/DiDemo/FriendHarvester.php

... lines 1 - 4

5

6

7

8

... lines 9 - 12

13

14

... lines 15 - 16

17

... lines 18 - 35

36

When you're finished, try the application again:

$ php app.php

Everything should still work just fine. And with any luck you will find a place for all of that annoying money.

Just like with every step so far, this has a few great advantages. First, FriendHarvester is more flexible since it now accepts
any object that implements MailerInterface. Second, it documents our code a bit more. It's clear now exactly what small
functionality FriendHarvester actually needs. Finally, in SmtpMailer, the fact that it implements an interface with a
sendMessage() method tells us that this method is particularly important. The class could have other methods, but
sendMessage() is probably an especially important one to focus on.

class SmtpMailer implements MailerInterface

{

}

use DiDemo\Mailer\MailerInterface;

class FriendHarvester

{

 public function __construct(\PDO $pdo, MailerInterface $mailer)

 {

 }

}

Chapter 4: Dependency Injection Container

Our project now has services, an interface, and is fully using dependency injection. Nice work! One of the downsides of DI is
that all the complexity of creating and configuring objects is now your job. This isn't so bad since it all happens in one place
and gives you so much control, but it is something we can improve!

If you want to make this easier, the tool you need is called a dependency injection container. A lot of DI containers exist in
PHP, but let's use Composer to grab the simplest one of all, called Pimple. Add a require key to composer.json to include the
library:

 12 lines 12 lines composer.jsoncomposer.json

1

... lines 2 - 3

4

... line 5

6

7

... lines 8 - 10

11

Make sure you've downloaded Composer, and then run php composer.phar install to download Pimple.

Go Deeper!

If you're new to Composer, check out our free The Wonderful World of Composer Tutorial.

Pimple is both powerful, and tiny. Kind of like having one on prom night. It is just a single file taking up around 200 lines.
That's one reason I love it!

Create a new Pimple container. This is an object of course, but it looks and acts like an array that we store all of our service
objects on:

 24 lines 24 lines app.phpapp.php

... lines 1 - 7

8

... lines 9 - 24

Start by adding the SmtpMailer object under a key called mailer. Instead of setting it directly, wrap it in a call to share() and in
an anonymous function. We'll talk more about this in a second, but just return the mailer object from the function for now:

 24 lines 24 lines app.phpapp.php

... lines 1 - 9

10

11

12

13

14

15

16

17

... lines 18 - 24

To access the SmtpMailer object, use the array syntax again:

{

 "require": {

 "pimple/pimple": "1.0.*"

 },

}

$container = new Pimple();

$container['mailer'] = $container->share(function() {

 return new SmtpMailer(

 'smtp.SendMoneyToStrangers.com',

 'smtpuser',

 'smtppass',

 '465'

);

});

http://pimple.sensiolabs.org/
http://getcomposer.org/download/
http://knpuniversity.com/screencast/composer

 24 lines 24 lines app.phpapp.php

... lines 1 - 21

22

... lines 23 - 24

It's that simple! Run the application to spam... I mean send great opportunities to our friends!

$ php app.php

Shared and Lazy Services

We haven't fully seen the awesomeness of the container yet, but there are already some cool things happening. First,
wrapping the instantiation of the mailer service in an anonymous function makes its creation "lazy":

 24 lines 24 lines app.phpapp.php

... lines 1 - 9

10

... lines 11 - 16

17

... lines 18 - 24

This means that the object isn't created until much later when we reference the mailer service and ask the container to give it
to us. And if we never reference mailer, it's never created at all - saving us time and memory.

Second, using the share() method means that no matter how many times we ask for the mailer service, it only creates it once.
Each call returns the original object:

$mailer1 = $container['mailer'];
$mailer2 = $container['mailer'];

// there is only 1 mailer, the 2 variables hold the same one
$willBeTrue = $mailer1 === $mailer2;

Tip

The share() method is deprecated and removed since Pimple 2.0. Now, you simply need to use bare anonymous
functions instead of wrapping them with share():

$container['session'] = function() {
 return new Session();
};

This is a very common property of a service: you only ever need just one. If we need to send many emails, we don't need
many mailers, we just need the one and then we'll call send() on it many times. This also makes our code faster and less
memory intensive, since the container guarantees that we only have one mailer. This is another detail that we don't need to
worry about.

Now witness the Geek-Awesomeness of this fully armed and operational
Container!
Let's keep going and add our other services to the container. But first, I'll add some comments to separate which part of our
code is building the container, and which part is our actual application code:

$friendHarvester = new FriendHarvester($pdo, $container['mailer']);

$container['mailer'] = $container->share(function() {

});

 28 lines 28 lines app.phpapp.php

... lines 1 - 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

... lines 25 - 28

Let's add FriendHarvester to the container next:

 32 lines 32 lines app.phpapp.php

... lines 1 - 20

21

22

23

... lines 24 - 32

That's easy, except that we somehow need access to the PDO object and the container itself so we can get two required
dependencies. Fortunately, the anonymous function is passed an argument, which is the Pimple container itself:

 35 lines 35 lines app.phpapp.php

... lines 1 - 20

21

22

23

... lines 24 - 35

To fix the missing PDO object, just make it a service as well:

 35 lines 35 lines app.phpapp.php

... lines 1 - 24

25

26

27

28

29

... lines 30 - 35

Now we can easily update the friend_harvester service configuration to use it:

/* START BUILDING CONTAINER */

$container = new Pimple();

$container['mailer'] = $container->share(function() {

 return new SmtpMailer(

 'smtp.SendMoneyToStrangers.com',

 'smtpuser',

 'smtppass',

 '465'

);

});

$dsn = 'sqlite:'.__DIR__.'/data/database.sqlite';

$pdo = new PDO($dsn);

/* END CONTAINER BUILDING */

$container['friend_harvester'] = $container->share(function() {

 return new FriendHarvester($pdo, $container['mailer']);

});

$container['friend_harvester'] = $container->share(function(Pimple $container) {

 return new FriendHarvester($container['pdo'], $container['mailer']);

});

$container['pdo'] = $container->share(function() {

 $dsn = 'sqlite:'.__DIR__.'/data/database.sqlite';

 return new PDO($dsn);

});

 35 lines 35 lines app.phpapp.php

... lines 1 - 20

21

22

23

... lines 24 - 35

With the new friend_harvester service, update the application code to just grab it out of the container:

 35 lines 35 lines app.phpapp.php

... lines 1 - 32

33

34

Now that all three of our services are in the container, you can start to see the power that this gives us. All of the logic of
exactly which objects depend on which other object is abstracted away into the container itself. Whenever we need to use a
service, we just reference it: we don't care how it's created or what dependencies it may have, it's all handled elsewhere. And
if the constructor arguments for a service like the mailer change later, we only need to update one spot in our code. Nobody
else knows or cares about this change.

Remember also that the services are constructed lazily. When we ask for the friend_harvester, the pdo and mailer services
haven't been instantiated yet. Fortunately, the container is smart enough to create them first, and then pass them into the
FriendHarvester constructor. All of that happens automatically, behind the scenes.

Configuration

But a container can hold more than just services, it can house our configuration as well. Create a new key on the container
called database.dsn, set it to our configuration, and then use it when we're creating the PDO object:

 35 lines 35 lines app.phpapp.php

... lines 1 - 11

12

... lines 13 - 26

27

28

29

... lines 30 - 35

We're not using the share() method or the anonymous function because this is just a scalar value, and we don't need to worry
about that lazy-loading stuff.

We can do the same thing with the SMTP configuration parameters. Notice that the name I'm giving to each of these
parameters isn't important at all, I'm just inventing a sane pattern and using the name where I need it:

$container['friend_harvester'] = $container->share(function(Pimple $container) {

 return new FriendHarvester($container['pdo'], $container['mailer']);

});

$friendHarvester = $container['friend_harvester'];

$friendHarvester->emailFriends();

$container['database.dsn'] = 'sqlite:'.__DIR__.'/data/database.sqlite';

$container['pdo'] = $container->share(function(Pimple $container) {

 return new PDO($container['database.dsn']);

});

 39 lines 39 lines app.phpapp.php

... lines 1 - 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

... lines 26 - 39

When we're all done, the application works exactly as before. What we've gained is the ability to keep all our configuration
together. This would make it very easy to change our database to use MySQL or change the SMTP password.

Move Configuration into a Separate File

Now that we have this flexibility, let's move the configuration and service building into separate files altogether. Create a new
app/ directory and config.php and services.php files. Require each of these from the app.php script right after creating the
container:

 16 lines 16 lines app.phpapp.php

... lines 1 - 4

5

6

7

8

9

10

11

12

... lines 13 - 16

Next, move the configuration logic into config.php and all the services into services.php. Be sure to update the SQLite
database path in config.php since we just moved this file:

 7 lines 7 lines app/config.phpapp/config.php

... lines 1 - 2

3

4

5

6

7

$container['database.dsn'] = 'sqlite:'.__DIR__.'/data/database.sqlite';

$container['smtp.server'] = 'smtp.SendMoneyToStrangers.com';

$container['smtp.user'] = 'smtpuser';

$container['smtp.password'] = 'smtp';

$container['smtp.port'] = 465;

$container['mailer'] = $container->share(function(Pimple $container) {

 return new SmtpMailer(

 $container['smtp.server'],

 $container['smtp.user'],

 $container['smtp.password'],

 $container['smtp.port']

);

});

/* START BUILDING CONTAINER */

$container = new Pimple();

require __DIR__.'/app/config.php';

require __DIR__.'/app/services.php';

/* END CONTAINER BUILDING */

$container['database.dsn'] = 'sqlite:'.__DIR__.'/../data/database.sqlite';

$container['smtp.server'] = 'smtp.SendMoneyToStrangers.com';

$container['smtp.user'] = 'smtpuser';

$container['smtp.password'] = 'smtp';

$container['smtp.port'] = 465;

 21 lines 21 lines app/services.phpapp/services.php

... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Skinny Controllers and Service-Oriented Architecture

Awesome! We now have configuration, service-building and our actual application code all separated into different files.
Notice how clear our actual app code is now - it's just one line to get out a service and another to use it.

If this were a web application, this would live in a controller. You'll often hear that you should have "skinny controllers" and a
"fat model". And whether you realize it or not, we've just seen that in practice! When we started, app.php held all of our logic.
After refactoring into services and using a service container, app.php is skinny. The "fat model" refers to moving all of your
logic into separate, single-purpose classes, which are sometimes referred to collectively as "the model". Another term for this
is service-oriented architecture.

In the real world, you may not always have skinny controllers, but always keep this philosophy in your mind. The skinnier
your controllers, the more readable, reusable, testable and maintainable that code will be. What's better, a 300 line long
chunk of code or 5 lines that use a few well-named and small service objects?

Auto-completion with a Container

One of the downsides to using a container is that your IDE and other developers don't exactly know what type of object a
service may be. There's no perfect answer to this, since a container is very dynamic by nature. But what you can do is use
PHP documentation whenever possible to explicitly say what type of object something is.

For example, after fetching the friend_harvester service, you can use a single-line comment to tell your IDE and other
developers exactly what type of object we're getting back:

 19 lines 19 lines app.phpapp.php

... lines 1 - 15

16

17

18

This gives us IDE auto-complete on the $friendHarvester variable. Another common tactic is to create an object or sub-class
the container and add specific methods that return different services and have proper PHPDoc on them. I won't show it here,
but imagine we've sub-classed the Pimple class and added a getFriendHarvester() method which has a proper @return
PHPDoc on it.

use DiDemo\Mailer\SmtpMailer;

use DiDemo\FriendHarvester;

$container['mailer'] = $container->share(function(Pimple $container) {

 return new SmtpMailer(

 $container['smtp.server'],

 $container['smtp.user'],

 $container['smtp.password'],

 $container['smtp.port']

);

});

$container['friend_harvester'] = $container->share(function(Pimple $container) {

 return new FriendHarvester($container['pdo'], $container['mailer']);

});

$container['pdo'] = $container->share(function(Pimple $container) {

 return new PDO($container['database.dsn']);

});

/** @var FriendHarvester $friendHarvester */

$friendHarvester = $container['friend_harvester'];

$friendHarvester->emailFriends();

Chapter 5: A Container in your Project

Ok, time to get to emailing! No matter what framework or system you work on, you can start applying these principles
immediately. You may already have a dependency injection container available to you, and if so, great! If not, don't worry!
Even without a container, you can start applying the principles of moving code into new service classes and using
dependency injection. If you have to instantiate these service objects manually when you need them, that's still a huge step
forward!

You can also bring a container into your project. Pimple is the simplest and easiest, but there are also others such as
Symfony's DependencyInjection Component, Aura Di, and Zend\Di. These are more feature-rich and also contain speed
optimizations.

Somewhere early in your bootstrap process, simply create the container, configure it, and make it available to your controllers
or page code.

If you have any questions or comments, post them! Have fun, and we'll see you next time!

http://symfony.com/doc/current/components/dependency_injection/introduction.html
https://github.com/auraphp/Aura.Di
http://framework.zend.com/manual/2.0/en/modules/zend.di.introduction.html

	Dependency Injection and the art of services and containers
	With <3 from SymfonyCasts
	Chapter 1: Dependency Injection
	Chapter 2: Services and Dependency Injection
	Accessing External Objects from a Service
	Our Friend Dependency Injection
	Chapter 3: Injecting Config & Services and using Interfaces
	Injecting Configuration
	Injecting the Whole Mailer
	Type-Hinting
	Adding an Interface
	Chapter 4: Dependency Injection Container
	Shared and Lazy Services

	Now witness the Geek-Awesomeness of this fully armed and operational Container!
	Configuration
	Move Configuration into a Separate File
	Skinny Controllers and Service-Oriented Architecture
	Auto-completion with a Container
	Chapter 5: A Container in your Project

