
FOSUserBundle FTW!

With <3 from SymfonyCasts

Chapter 1: Rock some FOSUserBundle!

The most popular bundle in all of Symfony is... GifExceptionBundle! Wait... that's not right... but it should be. The actual most
popular bundle is, of course, FOSUserBundle. And it's easy to know why: it gives you a lot of crazy-cool stuff, out-of-the-box:
registration, reset password, change password, and edit profile pages. Honestly, it feels like stealing.

But guess what? A lot of smart devs don't like FOSUserBundle. How could that be? The bundle does give you a lot of stuff.
But, it's not a magician: it doesn't know what your design looks like, what fields your registration form should have, the clever
text you want in your emails or where to redirect the user after registration.

See, there's a lot of stuff that makes your site special. And that means that if you're going to use FOSUserBundle - which is
awesome - you're going to need to customize a lot of things. And you've come to the right place: once we're done, you're
going to be embarrissingly good extending this bundle. I mean, your co-workers will gaze at you in amazement as you hook
into events, customize text and override templates. It's going to be beautiful thing.

Let's do it!

Code along with me yo!

As always, you should totally code along with me... it's probably what the cool kids are doing. Just click the download button
on this page and unzip that guy. Inside, you'll find a start/ directory that has the same code you see here. Open up
README.md for hilarious text... and setup details.

The last step will be to find your favorite terminal and run:

php bin/console server:run

to start the built-in PHP web server. Ok, load this up in your browser: http://localhost:8000.

Welcome to AquaNote! This is the same project we've been building in our main Symfony tutorials, but without any security
logic. Gasp! See that Login link? It's a lie! It goes nowhere! The login link is a lie!

Google for the FOSUserBundle documentation: it lives right on Symfony.com. And make sure you're on the 2.0 version.

Installing & Enabling the Bundle

We'll go through the install details... but in our own order. Of course, first, copy the composer require line... but don't worry
about the version number. Head over to your terminal and run that:

composer require friendsofsymfony/user-bundle

While we're waiting for Jordi to prepare out delicious FOSUserBundle package, go back and copy the new
FOSUserBundle() line from the docs, open our app/AppKernel.php file and paste it to enable the bundle. Oh, and
FOSUserBundle uses SwiftmailerBundle to send the password reset and registration confirmation emails. So, uncomment
that. You can also create your own custom mailer or tell FOSUserBundle to not send emails.

58 lines app/AppKernel.php

https://github.com/jolicode/GifExceptionBundle
http://symfony.com/doc/current/bundles/FOSUserBundle/index.html

<?php

... lines 2 - 5

class AppKernel extends Kernel

{

public function registerBundles()

{

$bundles = array(

... lines 11 - 14

new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle(),

... lines 16 - 21

new FOS\UserBundle\FOSUserBundle(),

... lines 23 - 24

);

... lines 26 - 35

}

... lines 37 - 56

}

Ok, flip back to your terminal. Bah! It exploded! Ok, it did install FOSUserBundle. So, let's not panic people. It just went crazy
while trying to clear the cache:

The child node db_driver at path fos_user must be configured

Ah, so this bundle has some required configuration.

Create your User Entity

Before we fill that in, I have a question: what does FOSUserBundle actually give us? In reality, just 2 things: a User entity and
a bunch of routes and controllers for things like registration, edit password, reset password, profile and a login page.

To use the User class from the bundle, we need to create our own small User class that extends their's.

Inside src/AppBundle/Entity, create a new PHP class called User. To extend the base class, add a use statement for their
User class with as BaseUser to avoid a lame conflict. Then add, extends BaseUser.

26 lines src/AppBundle/Entity/User.php

<?php

... line 2

namespace AppBundle\Entity;

... lines 4 - 5

use FOS\UserBundle\Model\User as BaseUser;

... lines 7 - 11

class User extends BaseUser

{

... lines 14 - 24

}

There's just one thing we must do in this class: add a protected $id property. Beyond that, this is just a normal entity class. So
I'll go to the Code->Generate menu - or Command+N on a Mac - and choose ORM Class to get my fancy @ORM\Entity stuff
on top. Add ticks around the user table name - that's a keyword in some database engines.

26 lines src/AppBundle/Entity/User.php

<?php

... lines 2 - 4

use Doctrine\ORM\Mapping as ORM;

... lines 6 - 7

/**

* @ORM\Entity

* @ORM\Table(name="`user`")

*/

class User extends BaseUser

{

... lines 14 - 18

protected $id;

... lines 20 - 24

}

Now, go back to Code->Generate, choose ORM Annotation and select the id column. Boom! We are annotated! Finally, go
back to Code->Generate one last time... until we do it more later - and generate the getId() method.

26 lines src/AppBundle/Entity/User.php

<?php

... lines 2 - 11

class User extends BaseUser

{

/**

* @ORM\Id

* @ORM\GeneratedValue(strategy="AUTO")

* @ORM\Column(type="integer")

*/

protected $id;

public function getId()

{

return $this->id;

}

}

This class is done!

Tip

Actually, this is unnecessary - the base User class already has a getId() method.

Adding the Required Configuration

And now we have everything we need to add the required configuration. In the docs, scroll down a little: under the Configure
section, copy their example config. Then, back in your editor, open app/config/config.yml, and paste this down at the bottom.

Ok, The db_driver is orm and the firewall_name - main - is also correct. You can see that key in security.yml.

And yea, the user_class is also correct. We're crushing it! For the email stuff, it doesn't matter, use hello@aquanote.com and
AquaNote Postman.

82 lines app/config/config.yml

... lines 1 - 74

fos_user:

db_driver: orm

firewall_name: main

user_class: AppBundle\Entity\User

from_email:

address: "hello@aquanote.com"

sender_name: "AquaNote Postman"

Generate the Migration

Finally, our app should be un-broken! Try the console:

php bin/console

It's alive! Now, we can generate the migration for our User class:

php bin/console doctrine:migrations:diff

Tip

If you get a "Command not Found" error, just install the DoctrineMigrationsBundle.

Yep, that looks about right. Run it:

php bin/console doctrine:migrations:migrate

Perfect!

Importing the Routing

At this point, the only thing this bundle has given us is the base User class... which is nice, but nothing too special, it has a
bunch of properties like username, email, password, lastLogin, etc.

The second thing this bundle gives us is a bunch of free routes and controllers. But to get those, we need to import the routes.
Back in the documentation, scroll down a bit until you see step 6: Import FOSUserBundle routing files. Ah ha! Copy that
routing import.

Find your app/config/routing.yml file and paste that on top.

12 lines app/config/routing.yml

... lines 1 - 9

fos_user:

resource: "@FOSUserBundle/Resources/config/routing/all.xml"

As soon as you do that, we have new routes! At your terminal, check them out:

php bin/console debug:router

Awesome! We have /login, /profile/edit, /register and others for resetting and changing your password. If we manually go to
/register in the browser... yea! A functional registration form. I know, it's horribly, embarrassingly ugly: we'll fix that.

Oh, and back on the docs, all the way at the bottom, there's a page about Advanced routing configuration. Open that in a new
tab. In your app, you may not need all of the pages that FOSUserBundle gives you. Maybe you need registration and reset
password, but you don't need a profile page. No problem! Instead of importing this all.xml file, just import the specific routes
you want. Seriously feel free to do this: if some route or controller isn't helping you, kill it.

Enabling the Translator

Oh, and if your registration page doesn't look mine - if it has some weird keys instead of real text, don't worry. In
app/config/config.yml, just make sure to uncomment the translator key under framework.

https://knpuniversity.com/screencast/symfony-doctrine/migrations
http://symfony.com/doc/master/bundles/FOSUserBundle/routing.html

FOSUserBundle uses the translator to translate internal "keys" into English or whatever other language.

A little bit of Security

And basically... at this point... we're done installing the bundle! But how is that possible? We haven't touched anything
related to security!

Here's the truth: this bundle has almost nothing to do with security: it just gives you a User class and some routes &
controllers! We could already register, reset our password or edit our profile without doing any more setup.

Well, that's almost true: we do need a tiny bit of security to make registration work. In security.yml, add an encoders key with
AppBundle\Entity\User set to bcrypt. When we register, FOSUserBundle needs to encode the plain-text password before
saving it. This tells it what algorithm to use.

32 lines app/config/security.yml

... lines 1 - 2

security:

encoders:

AppBundle\Entity\User: bcrypt

... lines 8 - 32

There's one other small bit of security we need right now. In the documentation, under step 4, copy the providers key. Paste
that over the old providers key in security.yml.

32 lines app/config/security.yml

... lines 1 - 2

security:

... lines 5 - 7

http://symfony.com/doc/current/book/security.html#where-do-users-come-from-user-providers

providers:

fos_userbundle:

id: fos_user.user_provider.username

... lines 12 - 32

I'll talk about this more in a few minutes, but it's needed for registration only because FOSUserBundle logs us in after
registering... which is really nice!

In the next chapter, we'll do more security setup. But for right now, that's all we need!

So try it out! Refresh /register. Let's use aquanaut1@gmail.com, aquanaut1, and password turtles. And boom! We are
registered and logged in! We even have a role: ROLE_USER. More on that later.

With a User class, a route import and a tiny bit of security, everything in the bundle works: registration, reset password, edit
password and edit profile.

The only thing you can't do is log out... or login. But that's not FOSUserBundle's fault: setting up security is our job. Let's do it
next.

Chapter 2: Security Setup

With FOSUserBundle setup, the only things we can't do is login and logout. FOSUserBundle does give us a /login page, but
it's just a static HTML form: setting up the actual authentication part is entirely up to us. And that's why, if you try to login now,
you get this angry message!

To prove how little FOSUserBundle is doing, go to /login. If you hover over your web debug toolbar, you can see that the
controller behind this page is called SecurityController. Cool! In my editor, I'll find that file by filename - Shift+Shift in PHP
Storm.

Sweet! See loginAction? This renders the login page. And all it does is check for any authentication errors stored in the
session and render a template. It has no logic whatsoever for processing the form submit, logging in, or anything else related
to security.

Configuring Logout

So let's finally add some security goodness, starting with logging out. Right now, if you go to /logout, you see an error
message. This is coming from that same controller: FOSUserBundle gives us a /logout route, but its controller is never
supposed to be called. To fix this, in security.yml, add logout: ~. That's it.

31 lines app/config/security.yml

... lines 1 - 2

security:

... lines 4 - 12

firewalls:

... lines 14 - 18

main:

... lines 20 - 22

logout: ~

... lines 24 - 31

Try going to /logout again. It works! We are anonymous! By adding the logout key, Symfony is now waiting for us to go to
/logout. When we do, it intercepts the request and logs us out. Other than giving us the /logout route, FOSUserBundle has
nothing to do with this.

Configuring form_login Security

What about logging in? It's the same thing. Under your firewall, add form_login. That's actually all you need. But, I'll add a bit
more: csrf_token_generator: security.csrf.token_manager. That will make sure the CSRF token - which is already added in
the FOSUserBundle login template - is verified when we submit.

31 lines app/config/security.yml

... lines 1 - 2

security:

... lines 4 - 12

firewalls:

... lines 14 - 18

main:

... lines 20 - 24

form_login:

csrf_token_generator: security.csrf.token_manager

... lines 27 - 31

As soon as we do that, go to /login and login with aquanaut1 password turtles. Winning! We are in! FOSUserBundle gives us
a login form, but we need to take care of the rest... which is pretty easy.

Adding Remember Me Functionality

Oh, and on the login form, we also have a remember me checkbox. If you want this to work, you'll need to add one more
setting: remember_me: with secret: '%secret%' to use the secret from parameters.yml.

34 lines app/config/security.yml

... lines 1 - 2

security:

... lines 4 - 12

firewalls:

... lines 14 - 18

main:

... lines 20 - 24

remember_me:

secret: '%secret%'

... lines 27 - 34

Ok, so about 5 lines to get our entire security system working. That kicks butt! And now, we can hook up the login link for real.
Open app/Resources/views/base.html.twig and find the static link. Add an if statement: if is_granted('ROLE_USER'), then
else and endif. FOSUserBundle guarantees that every user always at least has ROLE_USER. So it's safe to use this to
figure out whether or not the user is logged in.

53 lines app/Resources/views/base.html.twig

<!DOCTYPE html>

<html>

... lines 3 - 13

<body>

... lines 15 - 19

<header class="header">

... lines 21 - 22

<ul class="navi">

... line 24

{% if is_granted('ROLE_USER') %}

... line 26

{% else %}

... line 28

{% endif %}

</header>

... lines 32 - 50

</body>

</html>

For the logout link, use the route fos_user_security_logout, then we'll say "Logout". Oh, put all of this stuff inside an li tag. If
you run:

53 lines app/Resources/views/base.html.twig

... lines 1 - 19

<header class="header">

... lines 21 - 22

<ul class="navi">

... line 24

{% if is_granted('ROLE_USER') %}

Logout

... lines 27 - 28

{% endif %}

</header>

... lines 32 - 53

php bin/console debug:router

you can see that this is one of the routes we imported. Use a similar one for login: just copy the logout line, and change it to
login.

53 lines app/Resources/views/base.html.twig

... lines 1 - 19

<header class="header">

... lines 21 - 22

<ul class="navi">

... line 24

{% if is_granted('ROLE_USER') %}

... line 26

{% else %}

Login

{% endif %}

</header>

... lines 32 - 53

Nice! Go back, and refresh. Hit Logout! Woohoo!

Next, let's see what this looks like in the database, and talk about roles.

Chapter 3: Dynamic Roles and Canonical Fields

Let's see what this all looks like in the database! To query the user table, we can actually use the console:

php bin/console doctrine:query:sql 'SELECT * FROM user'

Nice! We inherited a bunch of columns from the base User class, like username, email and enabled. It even tracks our last
login. Thanks!

Canonical Fields!?

But there are two weird fields: username_canonical and email_canonical. What the heck? These are one of the more
controversial things about FOSUserBundle. Before we explore them, first, just know that when you set username or email,
the corresponding canonical field is automatically set for you. So, these canonical fields are not something you normally
need to worry or think about.

So why do they exist? Suppose that when you registered, you used some capital letters in your username. The username
column will be exactly as you typed it: with the capital letters. But username_canonical will be lowercased. Then, when you
login, FOSUserBundle lowercases the submitted username and queries via the username_canonical column.

Why? Because some databases - like Postgresql - are case sensitive. The canonical fields allow a user to login with a case
insensitive username - aquanaut in all lowercase, uppercase or any combination.

But mostly... this is just a detail you shouldn't think about. It's all handled for you and other than being ugly in the database, it
doesn't hurt anything.

Logging in with Username or Email

And by the way, right now you can only login with your username. If you want to be able to login with username or email, no
problem! The documentation has a section about this. Just change your user provider to
fos_user.user_provider.username_email.

What does this do? When you submit your login form, the provider section is responsible for taking what you entered and
finding the correct User record. Our current user provider finds the User by the username_canonical field. This other one
looks up a User by username or email. And you're 100% free to create your own user provider, if you need to login with some
other, weird logic. FOSUserBundle won't notice or care.

Dynamic Roles

Check out the database result again and look at roles. I know, it's strange: this is an array field. I'll hold command and click to
open the base User class from FOSUserBundle. See, roles holds an array. When you save, it automatically serializes to a
string in the database. This is done with the Doctrine array field type.

Notice that even though it's empty in the database, when we login, our user has ROLE_USER. This is thanks to the base
User class from FOSUserBundle: it makes sure the User has whatever roles are stored in the database plus ROLE_USER.

Creating an Admin User

Let's try an example of a User that has a different role. Run the console:

php bin/console

Ah, so the bundle comes with a few handy console commands, for activating, creating, promoting and demoting users. Let's
create a new one:

php bin/console fos:user:create

How about admin, admin@aquanote.com and password admin.

And now promote it!

php bin/console fos:user:promote

Hmm, let's give admin, ROLE_ADMIN. Ok, try the query again:

php bin/console doctrine:query:sql 'SELECT * FROM user'

Booya! Our new user has ROLE_ADMIN! Quick, go login! Well, logout first, then go login! Use admin and admin. Woohoo!
We have both ROLE_USER and ROLE_ADMIN.

In your app, if you want to give different roles to your users, you have 2 options. First, via the command line by using
fos:user:promote. If you only have a few users that need special permissions, this is a great option. Or, you can create a user
admin area and use the ChoiceType with the 'multiple' => true and 'expanded' => true to select the roles as checkboxes.

Ok, time to squash the ugly and make the FOSUserBundle pages use our layout!

Chapter 4: Layout and Template Customization

Everything works, but if you go to /register... it looks awful. Well, of course it looks awful! FOSUserBundle has no idea how
the page should be styled. But don't worry: we can get this looking much better, very quickly.

First, on the web debug toolbar, find the template icon and click it. This will show you all the templates used to render this
page... which is a beautiful cheat sheet for knowing what templates you can override!

Correcting the Base Layout

The one I'm interested in is layout.html.twig, which lives in FOSUserBundle.

In my editor, I'll press Shift+Shift to open that file. Ok, every Twig template in FOSUserBundle extends this layout.html.twig
file. For example, see the "Logged in as" text? That's coming from here.

But, we want all of FOSUserBundle's templates to instead extend our base.html.twig template. How can we do that?

Overriding the Layout

By overriding layout.html.twig. Let's see how. First, to override any template from a bundle, just go to app/Resources, then
create a directory with the same name as the bundle: FOSUserBundle. Inside, create one more directory: views.

Tip

The location where templates should live to override bundle templates has changed in Symfony 4. But, the idea is still the
same. For details, see: https://symfony.com/blog/new-in-symfony-3-4-improved-the-overriding-of-templates.

In this case, the layout.html.twig template lives right the root of the views/ directory in the bundle. So that's where we need to
create our's. Inside, extend the normal base.html.twig.

6 lines app/Resources/FOSUserBundle/views/layout.html.twig

{% extends 'base.html.twig' %}

... lines 2 - 6

Here's the magic part. Hit Shift+Shift again and open register.html.twig: this is the template for the registration page. Notice
that it overrides a block called fos_user_content. In layout.html.twig, this is printed in the middle.

So check this out: inside of our version of layout.html.twig, add {% block body %}: that's the name of the block in our
base.html.twig. Then, include {% block fos_user_content %} and {% endblock %}.

6 lines app/Resources/FOSUserBundle/views/layout.html.twig

{% extends 'base.html.twig' %}

{% block body %}

{% block fos_user_content %}{% endblock %}

{% endblock %}

We're effectively transferring the content from the fos_user_content block to the correct block: body.

These 5 lines of code are huge. Refresh the page! Ha! So much better! Not perfect, but every page now lives in our layout. If
you want, you can even add a little more markup around the block.

12 lines app/Resources/FOSUserBundle/views/layout.html.twig

https://symfony.com/blog/new-in-symfony-3-4-improved-the-overriding-of-templates

... lines 1 - 2

{% block body %}

<div class="container">

<div class="row">

<div class="col-xs-12">

{% block fos_user_content %}{% endblock %}

</div>

</div>

</div>

{% endblock %}

Overriding Individual Templates

Overriding the base layout is step one. But, each individual page still won't look quite right. On this page, we at least need a
"Register" h1, and I'd like to make that button look better.

So in addition to overriding layout.html.twig, you really need to override every template from FOSUserBundle that you use -
like registration, reset password, login and a few others.

Once again, click the templates link in the web debug toolbar. The template behind this page is register.html.twig, which we
already have open. But notice, it immediately includes register_content.html.twig. This is a really common pattern in this
bundle.

Let me show you: I'll click the views link to move my tree into FOSUserBundle. In Registration, we have register.html.twig
and register_content.html.twig. In Profile there's the same for edit and show.

In most cases, you'll want to override the _content.html.twig template. Why? Well, it doesn't really matter: by overriding the
_content.html.twig template, you don't need to worry about extending anything: you can just focus on the content.

Copy the contents of register_content.html.twig. Then, back in app/Resources/views, create a Registration directory. I'm
doing that because this template lives in a Registration directory. Finally, create register_content.html.twig and paste in the
content. Let's add a couple of classes to the button and an h1 that says: "Register Aquanauts!"

11 lines app/Resources/FOSUserBundle/views/Registration/register_content.html.twig

{% trans_default_domain 'FOSUserBundle' %}

<h1>Register Aquanaut!</h1>

{{ form_start(form, {'method': 'post', 'action': path('fos_user_registration_register'), 'attr': {'class':
'fos_user_registration_register'}}) }}

{{ form_widget(form) }}

<div>

<input class="btn btn-primary" type="submit" value="{{ 'registration.submit'|trans }}" />

</div>

{{ form_end(form) }}

Ok, refresh! Love it! In your app, make sure to do this for all of the different pages from the bundle that you're using. And
remember, if you don't need a page - like the edit profile page - save yourself some time by not importing its route or
overriding its template.

Chapter 5: Customizing Text via Translations

Create a new user: aquanaut2@gmail.com, aquanaut2, turtles, turtles. Hey, a pretty flash message!

The user has been created successfully

Tip

If you don't see this, make sure you're rendering success flash messages in your base template:
http://knpuniversity.com/screencast/symfony-forms/save-redirect-set-flash#rendering-the-flash-message

Well, that message lacks some pizzaz! How can we give it some personality? I mean, it's probably being set deep in some
PHP file somewhere. Do we need to override that file?

Nope! Every string you see from this bundle is being passed through the translator. So to change text, you just need to
translate it!

Back in PHPStorm, I'll close a few tabs, then press Shift+Shift and look for FOSUserBundle.en.yml. Whenever
FOSUserBundle translates something, it translates it through a domain called FOSUserBundle... which just means that when
you translate its strings, they'll live in a file called FOSUserBundle.{language}.yml.

Search for "The user has been created successfully". There it is! Under registration, flash, user_created.

Overriding the Translation

Let's breathe some life into this translation! To do that, inside app/Resources/translations, create a new file:
FOSUserBundle.en.yml. Then, add the same keys: registration, flash, and user_created with the message:

Welcome! Now let's do some science!

4 lines app/Resources/translations/FOSUserBundle.en.yml

registration:

flash:

user_created: "Welcome! Now let's do some science!"

Since this is a brand new translation file, you'll need to clear you cache for Symfony to see it:

php bin/console cache:clear

I know, you should almost never need to clear cache in the dev environment: this is one of those really rare things. When you
update this translation file, you will not need to clear the cache.

Cool! Go back to /register and repeat: aquanaut3, aquanaut3@gmail.com, turtles, turtles... and yes! Let's do some science!
Great idea!

Except, instead of science, let's customize some forms!

http://knpuniversity.com/screencast/symfony-forms/save-redirect-set-flash#rendering-the-flash-message

Chapter 6: Customizing the Forms

What if we wanted to add our own fields to the registration form? Like, what if we needed to add a "First Name" field? No
problem!

Adding a firstName field to User

Start in our User class. This is a normal entity... so we can add whatever fields we want, like private $firstName. I'll go to
Code->Generate, or Command+N on a Mac, then select "ORM Annoations" to annotate firstName. Then I'll go back to Code-
>Generate to add the getter and setter methods.

41 lines src/AppBundle/Entity/User.php

<?php

... lines 2 - 11

class User extends BaseUser

{

... lines 14 - 20

/**

* @ORM\Column(type="string")

*/

private $firstName;

... lines 25 - 30

public function getFirstName()

{

return $this->firstName;

}

public function setFirstName($firstName)

{

$this->firstName = $firstName;

}

}

Notice, right now, firstName is not nullable... meaning it's required in the database... and that's fine! If firstName is optional in
your app, you can of course add nullable=true. I'm mentioning this for one reason: if you add any required fields to your User,
the fos:user:create command will no longer work... because it will create a new User but leave those fields blank. I never use
that command in production anyways, but, you've been warned!

Move over to your terminal to generate the migration:

php bin/console doctrine:migrations:diff

That looks right! Run it:

php bin/console doctrine:migrations:migrate

New field added! Now, how can we add it to the form? Simple! We can create our own new form class and tell
FOSUserBundle to use it instead.

Creating the Override Form

In src/AppBundle, create a new Form directory and a new class called RegistrationFormType. Extend the normal
AbstractType. Then, I'll use Code->Generate Menu or Command+N to override the buildForm() method. Inside, just say
$builder->add('firstName').

22 lines src/AppBundle/Form/RegistrationFormType.php

<?php

... line 2

namespace AppBundle\Form;

... lines 4 - 8

class RegistrationFormType extends AbstractType

{

public function buildForm(FormBuilderInterface $builder, array $options)

{

$builder

->add('firstName');

}

... lines 16 - 20

}

In a minute, we'll tell FOSUserBundle to use this form instead of its normal registration form. But... instead of completely
replacing the default form, what I really want to do is just add one field to it. Is there a way to extend the existing form?

Extending the Core Form

Totally! And once again, the web debug toolbar can help us out. Mouse over the form icon and click that. This tells us what
form is used on this page: it's called RegistrationFormType - the same as our form class!

To build on top of that form, you don't actually extend it. Instead, override a method called getParent(). Inside, we'll return the
class that we want to extend. At the top, add use, autocomplete RegistrationFormType from the bundle and put as
BaseRegistrationFormType to avoid conflicting.

Now in getParent(), we can say return BaseRegistrationFormType::class.

22 lines src/AppBundle/Form/RegistrationFormType.php

<?php

... lines 2 - 6

use FOS\UserBundle\Form\Type\RegistrationFormType as BaseRegistrationFormType;

... line 8

class RegistrationFormType extends AbstractType

{

... lines 11 - 16

public function getParent()

{

return BaseRegistrationFormType::class;

}

}

And that is it! This form will have the existing fields plus firstName.

Registering the Form with FOSUserBundle

To tell FOSUserBundle about our form, we need to do two things. First, register this as a service. In my
app/config/services.yml, add app.form.registration with class set to the RegistrationFormType. It also needs to be tagged with
name: form.type.

22 lines app/config/services.yml

... lines 1 - 5

services:

... lines 7 - 17

app.form.registration:

class: AppBundle\Form\RegistrationFormType

tags:

- { name: form.type }

Finally, copy the class name and go into app/config/config.yml. This bundle has a lot of configuration. And at the bottom of
the documentation page, you can find a reference called FOSUserBundle Configuration Reference. I'll open it in a new tab.

This is pretty awesome: a full dump of all of the configuration options. Some of these are explained in more detail in other
places in the docs, but I love seeing everything right in front of me. And we can see what we're looking for under
registration.form.type.

Go back to your editor and add those: registration, form and type. Paste our class name!

85 lines app/config/config.yml

... lines 1 - 74

fos_user:

... lines 76 - 81

registration:

form:

type: AppBundle\Form\RegistrationFormType

And... we're done! Go back to registration and refresh. We got it! And that will save when we submit.

Customizing the Form Order

Why is firstName at the bottom? Well, remember inside of register_content.html.twig, we're using form_widget(form)... which
just dumps out the fields in whatever order they were added. Need more control? Cool: remove that and instead use
form_row(form.email), form_row(form.username), form_row(form.firstName) and form_row(form.plainPassword).

14 lines app/Resources/FOSUserBundle/views/Registration/register_content.html.twig

... lines 1 - 2

<h1>Register Aquanaut!</h1>

... line 4

{{ form_start(form, {'method': 'post', 'action': path('fos_user_registration_register'), 'attr': {'class':
'fos_user_registration_register'}}) }}

{{ form_row(form.email) }}

{{ form_row(form.username) }}

{{ form_row(form.firstName) }}

{{ form_row(form.plainPassword) }}

... lines 10 - 12

{{ form_end(form) }}

If you're not sure what the field names are called, again, use your web debug toolbar for the form: it shows you everything.

Refresh that page! Yes! First Name is exactly where we want it to be. Next, what about the username? Could we remove that
if our app only needs an email?

Chapter 7: My Users don't have a Username!

Okay: a challenge! In some apps... you don't even need a username - you register and login entirely with your email.

But... with FOSUserBundle, we always have a username field. So, are we stuck?

Nope! It is true that you can't remove the username field from your user table. But, we can remove it from everywhere else.

Auto-Setting the Username Field

Start in the User class. I'll go to the Code->Generate menu - or Command+N on a Mac - go to "Override Methods" and
choose setEmail(). Before the parent call, add $this->setUsername($email).

54 lines src/AppBundle/Entity/User.php

<?php

... lines 2 - 11

class User extends BaseUser

{

... lines 14 - 40

/**

* Overridden so that username is now optional

*

* @param string $email

* @return User

*/

public function setEmail($email)

{

$this->setUsername($email);

return parent::setEmail($email);

}

}

This is big! Thanks to this, we no longer need to worry about ever setting the username field. In the database, username will
always equal the email... which is definitely redundant and unnecessary, but in practice, it works fine.

Removing the Username Field from the Form

The only other thing we need to do is remove the username field from the registration form. How? Easy: in
RegistrationFormType, add ->remove('username').

23 lines src/AppBundle/Form/RegistrationFormType.php

<?php

... lines 2 - 8

class RegistrationFormType extends AbstractType

... line 10

public function buildForm(FormBuilderInterface $builder, array $options)

{

$builder

->add('firstName')

->remove('username');

}

... lines 17 - 21

}

Then, in the template, remove its form_row().

13 lines app/Resources/FOSUserBundle/views/Registration/register_content.html.twig

... lines 1 - 2

<h1>Register Aquanaut!</h1>

... line 4

{{ form_start(form, {'method': 'post', 'action': path('fos_user_registration_register'), 'attr': {'class':
'fos_user_registration_register'}}) }}

{{ form_row(form.email) }}

{{ form_row(form.firstName) }}

{{ form_row(form.plainPassword) }}

... lines 9 - 11

{{ form_end(form) }}

And yea, that's it! Refresh! No more username! Register as aquanaut4@gmail.com and submit. Check it out in the database:

php bin/console doctrine:query:sql 'SELECT * FROM user'

There it is! The username is now equal to the email.

Oh, and if you're using the profile edit page from the bundle, you'll also want to remove the username field from the
ProfileFormType form. It's done in exactly the same way.

Chapter 8: Customize everything with Events

We can override templates. We can override translations. We can override forms. But there's more than that. For example,
after we finish registration, we're redirected to this registration confirmation page. You know what? I'd rather do something
else: I'd rather redirect to the homepage and skip this page entirely. How can we do that?

Well, let's do a little bit of digging. If you hover over the route name in the web debug toolbar, you can see that this is page
rendered by RegistrationController. Back in my editor I'll press Shift+Shift and look for RegistrationController in the bundle.
Specifically, registerAction() is responsible for both rendering the registration page and processing the form submit.

And check this out: after the form is valid, it redirects to the confirmation page.

Events to the Rescue!

So at first, it seems like we need to override the controller itself. But not so fast! The controller - in fact every controller in
FOSUserBundle is littered with events: REGISTRATION_INITIALIZE, REGISTRATION_SUCCESS,
REGISTRATION_COMPLETED and REGISTRATION_FAILURE. Each of these represents a hook point where we can add
custom logic.

In this case, if you look closely, you can see that after it dispatches an event called REGISTRATION_SUCCESS, below, it
checks to see if the $event has a response set on it. If it does not, it redirects to the confirmation page. But if it does, it uses
that response.

That's the key! If we can add a listener to REGISTRATION_SUCCESS, we can create our own RedirectResponse and set
that on the event so that this controller uses it. Let's go!

Creating the Event Subscriber

Inside of AppBundle, create a new directory called EventListener. And in there, a new PHP class: how about
RedirectAfterRegistrationSubscriber. Make this implement EventSubscriberInterface: the interface that all event subscribers
must have. I'll use our favorite Code->Generate menu, or Command+N on a Mac, go to "Implement Methods" and select
getSubscribedEvents.

12 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

... lines 1 - 2

namespace AppBundle\EventListener;

... lines 4 - 6

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

public static function getSubscribedEvents()

{

}

}

We want to attach a listener to FOSUserEvents::REGISTRATION_SUCCESS, which, by the way, is just a constant that
equals some string event name.

In getSubscribedEvents(), add FOSUserEvents::REGISTRATION_SUCCESS assigned to onRegistrationSuccess. This
means that when the REGISTRATION_SUCCESS event is fired, the onRegistrationSuccess method should be called.
Create that above: public function onRegistrationSuccess().

22 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

<?php

... lines 2 - 8

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

public function onRegistrationSuccess(FormEvent $event)

{

}

public static function getSubscribedEvents()

{

return [

FOSUserEvents::REGISTRATION_SUCCESS => 'onRegistrationSuccess'

];

}

}

Oh, and notice that when this event is dispatched, the bundle passes a FormEvent object. That will be the first argument to
our listener method: FormEvent $event. That's what we need to set the response onto.

Investigating all the Events

Before we go any further, I'll hold command and click into the FOSUserEvents class... cause it's awesome! It holds a list of
every event dispatched by FOSUserBundle, what its purpose is, and what event object you will receive. This is gold.

Creating the RedirectResponse

Back in onRegistrationSuccess, we need to create a RedirectResponse and set it on the event. But to redirect to the
homepage, we'll need the router. At the top of the class, create public function __construct() with a RouterInterface $router
argument. Next, I'll hit Option+Enter, select "Initialize Fields" and choose router.

33 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

<?php

... lines 2 - 10

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

private $router;

public function __construct(RouterInterface $router)

{

$this->router = $router;

}

... lines 19 - 32

}

That was just a shortcut to create the private $router property and set it in the constructor: nothing fancy.

Now, in onRegistrationSuccess() we can say $url = $this->router->generate('homepage'), and $response = new
RedirectResponse($url). You may or may not be familiar with RedirectResponse. In a controller, to redirect, you use $this-
>redirectToRoute(). In reality, that's just a shortcut for these two lines!

Finally, add $event->setResponse($response).

33 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

<?php

... lines 2 - 10

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

... lines 13 - 19

public function onRegistrationSuccess(FormEvent $event)

{

$url = $this->router->generate('homepage');

$response = new RedirectResponse($url);

$event->setResponse($response);

}

... lines 26 - 32

}

Ok, this class is perfect! To tell Symfony about the event subscriber, head to app/config/services.yml. At the bottom, add
app.redirect_after_registration_subscriber, set the class, and add autowire: true. By doing that, thanks to the RouterInterface
type-hint, Symfony will automatically know to pass us the router.

Finally, add a tag on the bottom: name: kernel.event_subscriber. And we are done!

28 lines app/config/services.yml

... lines 1 - 5

services:

... lines 7 - 22

app.redirect_after_registration_subscriber:

class: AppBundle\EventListener\RedirectAfterRegistrationSubscriber

autowire: true

tags:

- { name: kernel.event_subscriber }

Try it out! Go back to /register and signup as aquanaut5@gmail.com. Fill out the rest of the fields and submit!

Boom! Back to our homepage! You can customize just about anything with events. So don't override the controller. Instead,
hook into an event!

Chapter 9: TargetPathTrait: Redirect to Previous Page

We now have control over where the user goes after registering. But... it's not as awesome as it could be. Let me show you
why.

First, look at my app/config/security.yml file. In order to access any URL that start with /admin, you need to be logged in. For
example, if I go to /admin/genus, it sends me to the login page.

Thanks to Symfony's form_login system, if we logged in, it would automatically redirect us back to /admin/genus... which is
awesome! That's clearly where the user wants to go.

But what if I instead clicked a link to register and submitted that form? Shouldn't that also redirect me back to /admin/genus
after? Yea, that would be way better: I want to keep the user's experience really smooth.

How can we do this?

Using TargetPathTrait

Guess what? It's almost effortless, thanks to a trait that was added in Symfony 3.1: TargetPathTrait. In your subscriber, use
TargetPathTrait. Then, down in onRegistrationSuccess, add $url = $this->getTargetPath() - a method provided by that trait.
Pass this $event->getRequest()->getSession() and for the "provider key" argument, pass main. Provider key is a fancy term
for your firewall's name.

42 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

<?php

... lines 2 - 11

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

use TargetPathTrait;

... lines 15 - 22

public function onRegistrationSuccess(FormEvent $event)

{

// main is your firewall's name

$url = $this->getTargetPath($event->getRequest()->getSession(), 'main');

... lines 27 - 33

}

... lines 35 - 41

}

What's going on here? Well, whenever you try to access a secured page anonymously, Symfony stores that URL somewhere
in the session before redirecting you to the login page. Then form_login uses that to redirect you after you authenticate. The
TargetPathTrait is just a shortcut for us to read that same key from the session.

If $url is empty - it means the user went directly to the registration page. No worries! Just send them to the homepage.

42 lines src/AppBundle/EventListener/RedirectAfterRegistrationSubscriber.php

<?php

... lines 2 - 11

class RedirectAfterRegistrationSubscriber implements EventSubscriberInterface

{

... lines 14 - 22

public function onRegistrationSuccess(FormEvent $event)

{

... lines 25 - 27

if (!$url) {

$url = $this->router->generate('homepage');

}

... lines 31 - 33

}

... lines 35 - 41

}

Let's try the entire flow. I'll go back to /admin/genus: it redirects me to the login page and sets that session key behind the
scenes. Then, I'll manually type in /register - but pretend like we clicked a link. Register as aquanaut6, password turtles.

Booya! Logged in and on the /admin/genus page. That's a kick butt registration form.

Chapter 10: FOSUserBundle <3's Guard Authenticators

We now understand that FOSUserBundle just gives us a nice User class and some routes & controllers for registration, reset
password, edit profile and a few other things. The bundle does not provide any authentication. Open app/config/security.yml.
The form_login authentication mechanism we're using is core to Symfony itself, not this bundle.

So, one of the questions we get a lot is: how can I use Guard authentication with FOSUserBundle? It turns out, it's simple!
Guard authentication and FOSUserBundle solve different problems, and they work together beautifully. Teamwork makes the
dream work!

But, why would you want to use Guard authentication with FOSUserBundle? Well, as easy as form_login is, it's a pain to
customize. Guard is more work up front, but gives you a lot more control. You can also use Guard to add some sort of API
authentication on top of form_login.

Creating the Authenticator

Let's replace form_login with a more flexible Guard authenticator. At the root of our project, you should have tutorial/ directory
with a file called LoginFormAuthenticator.php. In src/AppBundle, create a new directory called Security and paste that file
here.

103 lines src/AppBundle/Security/LoginFormAuthenticator.php

<?php

... line 2

namespace AppBundle\Security;

... lines 4 - 19

class LoginFormAuthenticator extends AbstractFormLoginAuthenticator

{

... lines 22 - 101

}

This LoginFormAuthenticator is almost an exact copy of the authenticator we created in our Symfony Security tutorial. I've
just added CSRF token checking - since our HTML login form has a CSRF token in it - and made a few other minor tweaks.
For example at the bottom, I updated the login route name to use the one from FOSUserBundle.

The authenticator is very straightforward: It looks for the submitted _username and _password fields from the login form. It
doesn't care if you built that login form yourself, or if it comes from FOSUserBundle. Then, it queries for your User object by
email only and checks to see if the password is valid. Obviously you can write your authenticator to do anything.

Registering the Authenticator

To get this to work, like all authenticators, we need to register it as a service. I'll add app.security.login_form_authenticator,
set the class to LoginFormAuthenticator and use autowire: true.

32 lines app/config/services.yml

... lines 1 - 5

services:

... lines 7 - 28

app.security.login_form_authenticator:

class: AppBundle\Security\LoginFormAuthenticator

autowire: true

Copy that service ID. Then open app/config/security.yml. Ok, let's comment-out form_login entirely. And instead, add guard,
authenticators, then paste the service ID.

http://knpuniversity.com/screencast/symfony-security

38 lines app/config/security.yml

... lines 1 - 2

security:

... lines 4 - 12

firewalls:

... lines 14 - 18

main:

... lines 20 - 27

guard:

authenticators:

- app.security.login_form_authenticator

form_login:

csrf_token_generator: security.csrf.token_manager

... lines 34 - 38

That's it! FOSUserBundle doesn't care who or what is processing the login form submit.

Let's try it! Click log out, click login and login with admin@aquanote.com. Yea, this does still say "Username", but we know
that our authenticator actually logs us in via email. So, we'll want to tweak that language. Use the password admin and...
boom!

Congrats! You just used a Guard authenticator with FOSUserBundle. Wasn't that nice? You should feel empowered to use
FOSUserBundle because you want things like a registration page or reset password system. But, you can still take control of
your actual login mechanism and do whatever the heck you want.

The last part of this bundle that you'll need to customize are the emails: the reset password email and the registration
confirmation email, if you want to send that one. The docs are good on this topic, and it's mostly a matter of overriding
templates... which we already mastered.

All right guys, go use FOSUserBundle to quickly bootstrap your site! As long as you understand what it does... and does not
give you, it's awesome. Seeya next time!

	FOSUserBundle FTW!
	With <3 from SymfonyCasts
	Chapter 1: Rock some FOSUserBundle!
	Code along with me yo!
	Installing & Enabling the Bundle
	Create your User Entity
	Adding the Required Configuration
	Generate the Migration
	Importing the Routing
	Enabling the Translator
	A little bit of Security
	Chapter 2: Security Setup
	Configuring Logout
	Configuring form_login Security
	Adding Remember Me Functionality
	Chapter 3: Dynamic Roles and Canonical Fields
	Canonical Fields!?
	Logging in with Username or Email
	Dynamic Roles
	Creating an Admin User
	Chapter 4: Layout and Template Customization
	Correcting the Base Layout
	Overriding the Layout
	Overriding Individual Templates
	Chapter 5: Customizing Text via Translations
	Overriding the Translation
	Chapter 6: Customizing the Forms
	Adding a firstName field to User
	Creating the Override Form
	Extending the Core Form
	Registering the Form with FOSUserBundle
	Customizing the Form Order
	Chapter 7: My Users don't have a Username!
	Auto-Setting the Username Field
	Removing the Username Field from the Form
	Chapter 8: Customize everything with Events
	Events to the Rescue!
	Creating the Event Subscriber
	Investigating all the Events
	Creating the RedirectResponse
	Chapter 9: TargetPathTrait: Redirect to Previous Page
	Using TargetPathTrait
	Chapter 10: FOSUserBundle <3's Guard Authenticators
	Creating the Authenticator
	Registering the Authenticator

