PHP Namespacesin Under 5
Minutes

ki

Chapter 1: PHP Namespaces in under 5 Minutes

I've an idea! Let's master PHP namespaces... and let's do it in under 5 minutes. Sip some

coffee... let's go!

Meet Foo

Meet Foo: a perfectly boring PHP class:

$ /7 ... lines 1 - 2

3 class Foo

S

5 public function doAwesomeThings()
6 {

7

8 3

9 }

Say hi Foo! Hilarious.

? /7 ... lines 1 - 2

3 class Foo

S

5 public function doAwesomeThings()
6 {

7 echo "Hi Foo!\n";

8 }

9 }

To instantiate our favorite new class, I'll move over to a different file and say - drumroll -

$foo = new Foo():

some-other-file.php

? /... lines 1 - 2
3 require 'Foo.php';
4

5 $foo = new Foo();

Tada! We can even call a method on it: $foo->doAwesomeThings():

some-other-file.php

? /... lines 1 - 2
require 'Foo.php';

3

4

5 $foo = new Foo();

6

7 $foo->doAwesomeThings();

Will it work? Of course! | can open a terminal and run:

php some-other-file.php

Namespaces: Making Foo more Hipster

Right now, Foo doesn't have a nhamespace! To make Foo more hipster, let's fix that. Above the

class, add, how about, namespace Acme\Tools:

? /7 ... lines 1 - 2

3 namespace Acme\Tools;
4

5 class Foo

6 {

$ /7 ... lines 7 - 10
11 }

Usually the namespace of a class matches its directory, but that's not technically required. | just

invented this one!

Using_a Namespaced Class

Congratulations! Our friend Foo now lives in a namespace. Putting a class in a namespace is a
lot like putting a file in a directory. To reference it, use the full, long path to the class:

Acme\Tools\Foo:

some-other-file.php
$ /... lines 1 - 2

3 require 'Foo.php';

4

5 $foo = new \Acme\Tools\Foo();
? // ... lines 6 - 8

just like you can use the absolute path to reference a file in your filesystem:

1ls /acme/tools/foo

When we try the script now:

php some-other-file.php

It still works!

The Magical & Optional use Statement

And... that's really! Namespaces are basically a way to... make your class names longer! Add

the namespace... then refer to the class using the namespace plus the class name. That's it.

But... having these long class names right in the middle of your code is a bummer! To fix that,
PHP namespaces have one more special thing: the use statement. At the top of the file, add

use Acme\Tools\Foo as SomeFooClass:

some-other-file.php
? /... lines 1 - 2

require 'Foo.php';

3
4
5 use Acme\Tools\Foo as SomeFooClass;
? // ... lines 6 - 10

This creates a... sort of... "shortcut". Anywhere else in this file, we can now just type

SomeClassFoo:

some-other-file.php

$ /... lines 1 - 2
require 'Foo.php';

use Acme\Tools\Foo as SomeFooClass;

$foo = new SomeFooClass();
// ... lines 8 - 10

N o o bW

and PHP will know that we're really referring to the long class name: Acme\Tools\Foo.

php some-other-file.php

Or... if you leave off the as part, PHP will assume you want this alias to be Foo. That's usually

how code looks:

some-other-file.php

? /... lines 1 - 2
require 'Foo.php';

use Acme\Tools\Foo;

$foo = new Foo();
// ... lines 8 - 10

N o o bW

So, namespaces make class names longer... and use statements allow us to create shortcuts

SO we can use the "short" name in our code.

Core PHP Classes

In modern PHP code, pretty much all classes you deal with will live in a namespace... except for
core PHP classes. Yep, core PHP classes do not live in a namespace... which kinda means that

they live at the "root" namespace - like a file at the root of your filesystem:

1ls /some-root-file

Let's play with the core DateTime object: $dt = new DateTime() and then

echo $dt->getTimestamp() with a line break:

some-other-file.php

$ /7 ... lines 1 - 8
9 $foo->doAwesomeThings();
10

11 $dt = new DateTime();
12 echo $dt->getTimestamp()."\n";

When we run the script:

php some-other-file.php

It works perfectly! But... now move that same code into the doAwsomeThings method inside

our friend Foo:

$ /7 ... lines 1 - 2

3 namespace Acme\Tools;

4

5 class Foo

6 {

7 public function doAwesomeThings()
8 {

9 echo "Hi Foo!\n";
10
11 $dt = new DateTime();
12 echo $dt->getTimestamp()."\n";
13 }
14 }

Now try the code:

php some-other-file.php

Ah! It explodes! And check out that error!

“Class Acme\Tools\DateTime not found”

The real class name should just be DateTime. So, why does PHP think it's
Acme\Tools\DateTime ? Because namespaces work like directories! Foo lives in
Acme\Tools. When we just say DateTime, it's the same as looking for a DateTime file

inside of an Acme/Tools directory:

cd /acme/tools

1ls DateTime # /acme/tools/DateTime

There are two ways to fix this. The first is to use the "fully qualified" class name. So,

\DateTime:

Foo.php
T /7 ... lines 1 - 2
namespace Acme\Tools;

class Foo

{

public function doAwesomeThings()

{
// ... lines 9 - 10

11 $dt = new \DateTime();
$ /7 ... line 12

© 00 N O O~ W

Yep... that works just like a filesystem.

php some-other-file.php

Or... you can use DateTime... then remove the \ below:

? /... lines 1 - 2

3 namespace Acme\Tools;

4

5 use DateTime;

6

7 class Foo

8 {

9 public function doAwesomeThings()
10 {

$ /7 ... lines 11 - 12

13 $dt = new DateTime();
$ /7 ... line 14

15 3

16 }

That's really the same thing: there's no \ at the beginning of a use statement, but you should

pretend there is. This aliases DateTime to \DateTime.

And... we're done! Namespaces make your class hames longer, use statements allow you to
create "shortcuts” so you can use short names in your code and the whole system works

exactly like files inside directories.

Have fun!

With <3 from SymfonyCasts

