
Symfony Best Practices

With <3 from SymfonyCasts

Chapter 1: Symfony: Keep it Simple with @Route and
Templates

SYMFONY: KEEP IT SIMPLE WITH @ROUTE AND TEMPLATESSYMFONY: KEEP IT SIMPLE WITH @ROUTE AND TEMPLATES¶¶

Hey Symfony world. So you probably saw that Symfony released these best practices and I’ll admit I was partially
responsible for these. But apart from that, I’m actually really really excited about them because they’re going to allow us
reduce the complexity that we have in our application.

Note

The best practices are aimed at your non-shared application code. If you are building something that you need to share internally or
to the world, you’ll want to do a little more work. See Best Practices for Reusable Bundles

Complexity Versus Simplicity Versus Easy¶

Last week at Symfony Live, I spent my entire presentation actually talking about complexity and how we can reduce it in our
applications. The opposite of complexity is simplicity which means “easily understood”. Simplicity is already something that
we already really want in our own code. We want to come back to our code in 6 months and say “this make sense to me” - not
“what was I thinking here? I don’t remember, I need to dive in and figure out what I was thinking”.

I wanted to show a few of my favorite best practices that are going to reduce complexity. In particular a few things that are
going to give us all less directories, less files and will make our projects a lot smaller and easier to navigate.

Our Project¶

I’m starting with a fresh Symfony 2.5 project because all of the changes we’re going to talk about are things that can be done
in any version of Symfony. The project has an AppBundle in it. Now notice the interesting thing here is that we don’t have a
vendor namespace:

src/
 AppBundle/
 AppBundle.php
 DataFixtures/
 Entity/

That’s normally the src/MyCompany/AppBundle . This just isn’t necessary in your own projects. You’re not going to collide with
anybody else’s namespaces because all reusable third-party bundles do have a vendor namespace. So don’t put one in
yours, it just makes things longer.

Other than that, we have a really simple Post entity:

http://symfony.com/doc/current/cookbook/bundles/best_practices.html

// src/AppBundle/Entity/Post.php
// ...

/**
 * @ORM\Entity
 */
class Post
{
 /**
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @ORM\Column(name="title", type="string", length=255)
 */
 private $title;

 /**
 * @ORM\Column(name="contents", type="text")
 */
 private $contents;

 // ...
}

I’ve added some data fixtures using Alice and Faker. I’ll talk about that another time, but that’s a really great way to do your
fixtures. And the only other changes is in app/config/routing.yml . I already have a line that import annotations from my
Controller/ directory”

app/config/routing.yml
app_bundle_annotations:
 resource: "@AppBundle/Controller"
 type: annotation

This is likely a change that you’ll see out of the box in Symfony 2.6.

I don’t have that directory yet, so let’s go ahead and create it otherwise Symfony will throw an error at us:

mkdir src/AppBundle/Controller

I’ve already initialize the database and loaded my fixtures. I have my build-in web server already running so let’s go and try it
out:

composer install
php app/console doctrine:database:create
php app/console doctrine:schema:create
php app/console doctrine:fixtures:load
php app/console server:run

http://localhost:8000

And there is our beautiful 404 page, because of course we don’t have a homepage yet.

Creating the Simplest Page Ever¶

So let’s go ahead and create a page. The first page I want to create is something that lists all posts. I’m using PHPStorm with
the awesome Symfony2 plugin so I have that nice Symfony2 controller option there. But if you don’t, just create the controller

by hand:

// src/AppBundle/Controller/PostController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;

class PostController extends Controller
{
}

The @Route Annotation¶

So instead of having an extra routing.yml file, we’re just going to use the @Route annotation and give it a path. Of course we
need to remove the $name argument since we don’t have that in our route anymore and I’ll give it an inspirational die
statement so we can make sure things are working:

// src/AppBundle/Controller/PostController.php
// ...

/**
 * @Route("/posts")
 */
public function indexAction()
{
 die('it works!');
}

Now, as many of you know, every time you have an annotation, you need to have a use statement for it. So I’ll let PHPStorm
help me here and auto-complete that use statement. But you can also just go Google for SensioFrameworkExtraBundle,
which is what gives us the @Route annotation. Scroll down a little bit and you’ll see all of the use statements you’ll need if
you use this library:

// src/AppBundle/Controller/PostController.php
namespace AppBundle\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class PostController extends Controller
{
 // indexAction lives here ...
}

So we have the @Route annotation, we have our control method, so lets try going to /post and it works!

http://localhost:8000/posts

So no surprises there: the @Route annotation is all we need.

Simple Template Organization¶

So let’s finish this page. It should be fairly straightforward: we’re going to use Doctrine to query for all the posts and then pass
them into a template:

/**
 * @Route("/posts")
 */
public function indexAction()
{
 $posts = $this->getDoctrine()
 ->getRepository('AppBundle:Post')
 ->findAll();

 return $this->render('Post/index.html.twig', array(
 'posts' => $posts,
));
}

Now, notice that my template name does not have any colons in it. Normally we have this AppBundle:Post:index.html.twig
thing. One of my favorite new best practices is to store your templates in the app/Resources/views directory. And when you do
this, you don’t need any colons: you can just say Post/index.html.twig and it’s going to look for that in the app/Resources/views
directory.

Note

I’m using an upper-case Post , but the best-practices say to use a lowercase post . I actually like the lowercase better, but choose
whatever you want.

I’ll create a template and of course make it extend base.html.twig . And for the same reason here we don’t need the :: before.
We can just say base.html.twig and it’s going to look in the app/Resources/views directory:

{# app/Resources/views/Post/index.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>POSTS!</h1>

 {% for post in posts %}

 {{ post.title }}

 {% endfor %}

{% endblock %}

Now this may seem like a small detail, but there’s 2 massive advantages to this. One, nobody liked or understood the colon
syntax, especially beginners. I hated teaching it: every time I told them the AppBundle:Post:index.html.twig thing, it didn’t make
sense to anybody. The second thing is that we no longer have our templates spread out across our project or our bundles. So
if you have a frontend developer working with you, they can easily find those templates because they’re all sitting in one
directory. A lot of times complexity is about perceived complexity: the more files and directories you have, the harder things
are going to luck.

And no surprises, when we refresh, we have a working page. So one thing I want to highlight is that we only touched two
files: our controller and our template.

Creating the Show Page¶

So now I want to create a page that is going to show just one blog post, and it’s going to be even easier. Just like before,
we’ll start with @Route . The only difference here is that we’ll have the {id} wildcard. And as you already know we’re going to
map that to an $id argument in our controller. And because I love die statements, we’ll try that just to test it out:

// src/AppBundle/Controller/PostController.php
// ...

/**
 * @Route("/posts/{id}")
 */
public function showAction($id)
{
 die('Mr Testers');
}

Add an id on the end of the URL and there’s our die statement:

http://localhost:8000/posts/5

The (In)Famous ParamConverter Trick¶

So now I want to show you one controversial trick. Normally if we have {id} in the URL, then we have a $id argument. But
you can also change that argument if you type-hint it with Post , which is our entity. Then Doctrine is going to automatically
query for that Post based on the {id} in the URL. And if it doesn’t find one, it’s going to throw a 404 page:

// src/AppBundle/Controller/PostController.php
// ...

/**
 * @Route("/posts/{id}")
 */
public function showAction(Post $post)
{
 var_dump($post);die;
}

And in this case, you can see it works perfectly. This comes from the ParamConverter of the SensioFrameworkExtraBundle
and the only gotcha is that the name of your wildcard - so {id} for us - needs to match up with the property. So we have an
{id} wildcard and we have an id property. If we change that to be {postId} , it’s not going to work because it doesn’t match
our property name. Yes there are ways to configure the ParamConverter to figure this all out. But right now the configuration is
actually really ugly, so I use this when it’s easy and if it’s not easy I just query myself. It’s not a big deal.

Let’s finish this up. We’ll render a template. Notice the controller is basically only one line, which is nice. And then we’ll
create a template just to make sure that things are actually working. Print out the title, print out the contents and refresh to see
some nice Latin on the screen:

{# app/Resources/views/Post/show.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>{{ post.title }}</h1>

<div>
 {{ post.contents }}
</div>
{% endblock %}

Route Names and Requirements¶

The other common thing that routes need are names. And actually right now, our routes do have a name. If we go over to
router:debug , we’re going to see that Symfony has given an auto-generated names to each of our routes, which is fine, but I
don’t exactly trust that:

http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

php app/console router:debug

So the minute I actually need to link to one of these pages, I’m going to pass a name option to the @Route annotation to
give it a specific name:

/**
 * @Route("/posts/{id}", name="post_show")
 */
public function showAction(Post $post)
{
 // ...
}

Once we’ve done that, linking to it is just like anything else: we got to Twig, we use the path() function, and everything is
going to work perfectly:

{# app/Resources/views/Post/index.html.twig #}
{# ... #}

{% for post in posts %}

 {{ post.title }}

{% endfor %}

Beyond the path and the name of the route, the only other common thing for routes is to add requirements. If you Google for
@Route Symfony annotation, you’ll find the documentation page that shows you how to add those. It’s just another option on
the @Route annotation:

/**
 * @Route("/posts/{id}", name="post_show", requirements={"id"="\d+"})
 */
public function showAction(Post $post)
{
 // ...
}

And since this is all we really do with routes, it doesn’t really get any messier than this.

Keep it Simple, Pass Along Feedback¶

And that’s really it. With the @Route annotation and putting all of your templates in the same directory, your project already
starts to get a lot smaller. So keep things simple, try this out, and let me know what you think.

Seeya next time :).

	Symfony Best Practices
	With <3 from SymfonyCasts
	Chapter 1: Symfony: Keep it Simple with @Route and Templates

	SYMFONY: KEEP IT SIMPLE WITH @ROUTE AND TEMPLATES¶
	Complexity Versus Simplicity Versus Easy¶
	Our Project¶
	Creating the Simplest Page Ever¶
	The @Route Annotation¶
	Simple Template Organization¶
	Creating the Show Page¶
	The (In)Famous ParamConverter Trick¶
	Route Names and Requirements¶
	Keep it Simple, Pass Along Feedback¶

