
Stellar Development with
Symfony 4



Chapter 1: Symfony 4: Let's Launch!

Hey guys! Yes! It's Symfony 4 time! I am so excited. Why? Because nothing makes me happier

than sitting down to work inside a framework where coding is actually fun, and where I can build

features fast, but without sacrificing quality. Well, maybe I'd be even happier doing all of that on

a beach... with, maybe a cold drink?

Anyways, Symfony 4 completely re-imagined the developer experience: you're going to create

better features, faster than ever. And, Symfony has a new, unique super-power: it starts as a

microframework, then automatically scales in size as your project grows. How? Stay tuned...

Oh, and did I mention that Symfony 4 is the fastest version ever? And the fastest PHP

framework? Honestly, all frameworks are fast enough anyways, but the point is this: you're

building on a seriously awesome foundation.

 Tip

See http://www.phpbenchmarks.com for the third-party benchmark stats!

Prep: Download & Update Composer

Ok, let's get started already! Open a new terminal and move into whatever directory you want.

Make sure that you already have Composer installed globally so that you can just say

composer . If you have any questions, ask us in the comments!

And also make sure you have the latest version:

composer self-update

That's important: Composer had a recent bug fix to help Symfony.

Install Symfony!

http://www.phpbenchmarks.com/
https://getcomposer.org/


To download your new Symfony project, run

composer create-project symfony/skeleton  and put this into a new directory called

the_spacebar .

composer create-project symfony/skeleton the_spacebar '4.4.*'

That's the name of our project! "The Spacebar" will be the place for people from across the

galaxy to communicate, share news and argue about celebrities and BitCoin. It's going to be

amazing!

This command clones the symfony/skeleton  project and then runs composer install  to

download its dependencies.

Further down, there's something special: something about "recipes". OooOOO. Recipes are a

new and very important concept. We'll talk about them in a few minutes.

Starting the Web Server

And at the bottom, cool! Symfony gives us clear instructions about what to do next. Move into

the new directory:

cd the_spacebar

Apparently, we can run our app immediately by executing:

php -S 127.0.0.1:8000 -t public

This starts the built-in PHP web server, which is great for development. public/  is the

document root of the project - but more on that soon!



 Tip

If you want to use Nginx or Apache for local development, you can! See http://bit.ly/symfony-

web-servers.

Time to blast off! Move to your browser and go to http://localhost:8000 . Say hello to

your new Symfony app!

Our Tiny Project

 Tip

Symfony no longer creates a Git repository automatically for you. But, no problem! Just type

git init  once to initialize your repository.

Back in the terminal, I'll create a new terminal tab. Symfony already inititalized a new git

repository for us and gave us a perfect .gitignore  file. Thanks Symfony!

 Tip

If you're using PhpStorm, you'll want to ignore the .idea  directory from git. I already have it

ignored in my global .gitignore file: https://help.github.com/articles/ignoring-files/

That means we can create our first commit just by saying:

git init git add . git commit

Create a calm and well-thought-out commit message.

# Woohoo! OMG WE ARE USING SYMFONY4

Woh! Check this out: the entire project - including Composer and .gitignore  stuff - is only 16

files! Our app is teenie-tiny!

http://bit.ly/symfony-web-servers
http://bit.ly/symfony-web-servers
https://help.github.com/articles/ignoring-files/


Let's learn more about our project next and setup our editor to make Symfony development

amazing!



Chapter 2: Our Micro-App & PhpStorm Setup

Our mission: to boldly go where no one has gone before... by checking out our app! I already

opened the new directory in PhpStorm, so fire up your tricorder and let's explore!

The public/ Directory

There are only three directories you need to think about. First, public/  is the document root:

so it will hold all publicly accessible files. And... there's just one right now! index.php . This is

the "front controller": a fancy word programmers invented that means that this is the file that's

executed when you go to any URL.

But, really, you'll almost never need to worry about it. In fact, now that we've talked about this

directory, stop thinking about it!

src/ and config/

Yea, I lied! There are truly only two directories you need to think about: config/  and src/ .

config/  holds... um... ya know... config files and src/  is where you'll put all your PHP code.

It's just that simple.

Where is Symfony? As usual, when we created the project, Composer read our

composer.json  file and downloaded all the third-party libraries - including parts of Symfony -

into the vendor/  directory.

Installing the Server

Go back to your terminal and find the original tab. Check this out: at the bottom, it says that we

can get a better web server by running composer require server . I like better stuff! So

let's try it! Press Ctrl+C  to stop the existing server, and then run:



composer require server

If you're familiar with Composer... that package name should look funny! Really, wrong!

Normally, every package name is "something" slash "something", like symfony/console .

So... server  just should not work! But it does! This is part of a cool new system called Flex.

More about that soon!

When this finishes, you can now run:

php ./bin/console server:run

This does basically the same thing as before... but the command is shorter. And when we

refresh, it still works!

By the way, this bin/console  command is going to be our new robot side-kick. But it's not

magic: our project has a bin/  directory with a console  file inside. Windows users should say

php bin/console ... because it's just a PHP file.

So, what amazing things can this bin/console  robot do? Find your open terminal tab and just

run:

php ./bin/console

Yes! This is a list of all of the bin/console  commands. Some of these are debugging gold.

We'll talk about them along the way!

PhpStorm Setup

Ok, we are almost ready to start coding! But we need talk about our spaceship, I mean, editor!

Look, you can use whatever your want... but... I highly recommend PhpStorm! Seriously, it

makes developing in Symfony a dream! And no, those nice guys & gals at PhpStorm aren't

paying me to say this... but they can if they want to!



Ahem, If you do use it... which would be awesome for you... there are 2 secrets you need to

know to trick out your spaceship, ah, editor! Clearly I was in hyper-sleep too long.

Go to Preferences, Plugins, then click "Browse Repositories". There are 3 must-have plugins.

Search for "Symfony". First: the "Symfony Plugin". It has over 2 million downloads for a reason:

it will give you tons of ridiculous auto-completion. You should also download "PHP Annotations"

and "PHP Toolbox". I already have them installed. If you don't, you'll see an "Install" button right

at the top of the description. Install those and restart PHPStorm.

Then, come back to Preferences, search for "symfony" and find the new "Symfony" section.

Click the "Enable Plugin" checkbox: you need to enable the Symfony plugin for each project. It

says you need to restart... but I think that's lie. It's space! What could go wrong?

So that's PhpStorm trick #1. For the second, search "Composer" and click on the "Composer"

section. Click to browse for the "Path to composer.json" and select the one in our project. I'm

not sure why this isn't automatic... but whatever! Thanks to this, PhpStorm will make it easier to

create classes in src/ . You'll see this really soon.

Okay! Our project is set up and it's already working. Let's start building some pages and

discovering more cool things about new app.



Chapter 3: Routes, Controllers, Pages, oh my!

Let's create our first page! Actually, this is the main job of a framework: to give you a route and

controller system. A route is configuration that defines the URL for a page and a controller is a

function that we write that actually builds the content for that page.

And right now... our app is really small! Instead of weighing down your project with every

possible feature you could ever need - after all, we're not in zero-gravity yet - a Symfony app is

basically just a small route-controller system. Later, we'll install more features when we need

them, like a warp drive! Those always come in handy. Adding more features is actually going to

be pretty awesome. More on that later.

First Route & Controller

Open your app's main routing file: config/routes.yaml :

config/routes.yaml

1

2

3

Hey! We already have an example! Uncomment that. Ignore the index  key for now: that's the

internal name of the route, but it's not important yet.

This says that when someone goes to the homepage - /  - Symfony should execute an

index()  method in a DefaultController  class. Change this to ArticleController

and the method to homepage :

config/routes.yaml

1

2

3

And... yea! That's a route! Hi route! It defines the URL and tells Symfony what controller function

to execute.

#index:

#    path: /

#    controller: App\Controller\DefaultController::index

index:

    path: /

    controller: App\Controller\ArticleController::homepage



The controller class doesn't exist yet, so let's create it! Right-click on the Controller  directory

and go to "New" or press Cmd+N  on a Mac. Choose "PHP Class". And, yes! Remember that

Composer setup we did in Preferences? Thanks to that, PhpStorm correctly guesses the

namespace! The force is strong with this one... The namespace for every class in src/  should

be App  plus whatever sub-directory it's in.

Name this ArticleController :

src/Controller/ArticleController.php

1

2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 12

13

And inside, add public function homepage() :

src/Controller/ArticleController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

9

10

 // ... line 11

12

13

This function is the controller... and it's our place to build the page. To be more confusing, it's

also called an "action", or "ghob" to its Klingon friends.

Anyways, we can do whatever we want here: make database queries, API calls, take soil

samples looking for organic materials or render a template. There's just one rule: a controller

must return a Symfony Response  object.

So let's say: return new Response() : we want the one from HttpFoundation . Give it a

calm message: OMG! My first page already! WOOO! :

<?php

namespace App\Controller;

class ArticleController

{

}

namespace App\Controller;

class ArticleController

{

    public function homepage()

    {

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

Ahem. Oh, and check this out: when I let PhpStorm auto-complete the Response  class it

added this use  statement to the top of the file automatically:

src/Controller/ArticleController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 14

You'll see me do that a lot. Good job Storm!

Let's try the page! Find your browser. Oh, this "Welcome" page only shows if you don't have any

routes configured. Refresh! Yes! This is our page. Our first of many.

Annotation Routes

That was pretty easy, but it can be easier! Instead of creating our routes in YAML, let's use a

cool feature called annotations. This is an extra feature, so we need to install it. Find your open

terminal and run:

composer require annotations

Interesting... this annotations  package actually installed

sensio/framework-extra-bundle . We're going to talk about how that works very soon.

Now, about these annotation routes. Comment-out the YAML route:

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

class ArticleController

{

    public function homepage()

    {

        return new Response('OMG! My first page already! WOOO!');

    }

}

use Symfony\Component\HttpFoundation\Response;



config/routes.yaml

1

2

3

Then, in ArticleController , above the controller method, add /** , hit enter, clear this out,

and say @Route() . You can use either class - but make sure PhpStorm adds the use

statement on top. Then add "/" :

src/Controller/ArticleController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

12

13

14

 // ... line 15

16

17

 Tip

When you auto-complete the @Route  annotation, be sure to choose the one from

Symfony\Component\Routing  - the one we chose is now deprecated. Both work the

same.

That's it! The route is defined right above the controller, which is why I love annotation routes:

everything is in one place. But don't trust me, find your browser and refresh. It's a traaaap! I

mean, it works!

 Tip

What exactly are annotations? They're PHP comments that are read as configuration.

Fancy Wildcard Routes

#index:

#    path: /

#    controller: App\Controller\ArticleController::homepage

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class ArticleController

{

    /**

     * @Route("/")

     */

    public function homepage()

    {

    }

}



So what else can we do with routes? Create another public function called show() . I want this

page to eventually display a full article. Give it a route:

@Route("/news/why-asteroids-taste-like-bacon") :

src/Controller/ArticleController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

 // ... line 23

24

25

Eventually, this is how we want our URLs to look. This is called a "slug", it's a URL version of

the title. As usual, return a

new Response('Future page to show one space article!') :

src/Controller/ArticleController.php

 // ... lines 1 - 4

5

6

7

8

9

 // ... lines 10 - 17

18

19

20

21

22

23

24

25

Perfect! Copy that URL and try it in your browser. It works... but this sucks! I don't want to build

a route and controller for every single article that lives in the database. Nope, we need a route

that can match /news/  anything. How? Use {slug} :

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

class ArticleController

{

    /**

     * @Route("/news/why-asteroids-taste-like-bacon")

     */

    public function show()

    {

    }

}

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;

use Symfony\Component\HttpFoundation\Response;

class ArticleController

{

    /**

     * @Route("/news/why-asteroids-taste-like-bacon")

     */

    public function show()

    {

        return new Response('Future page to show one space article!');

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

 // ... lines 23 - 26

27

28

This route now matches /news/  anything: that {slug}  is a wildcard. Oh, and the name slug

could be anything. But whatever you choose now becomes available as an argument to your

"ghob", I mean your action.

So let's refactor our success message to say:

“Future page to show the article”

And then that slug:

src/Controller/ArticleController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

23

24

25

26

27

28

Try it! Refresh the same URL. Yes! It matches the route and the slug prints! Change it to

something else: /why-asteroids-taste-like-tacos . So delicious! Go back to bacon...

because... ya know... everyone knows that's what asteroids really taste like.

class ArticleController

{

    /**

     * @Route("/news/{slug}")

     */

    public function show($slug)

    {

    }

}

class ArticleController

{

    /**

     * @Route("/news/{slug}")

     */

    public function show($slug)

    {

        return new Response(sprintf(

            'Future page to show the article: "%s"',

            $slug

        ));

    }

}



And... yes! We're 3 chapters in and you now know the first half of Symfony: the route &

controller system. Sure, you can do fancier things with routes, like match regular expressions,

HTTP methods or host names - but that will all be pretty easy for you now.

It's time to move on to something really important: it's time to learn about Symfony Flex and the

recipe system. Yum!



Chapter 4: Symfony Flex & Aliases

It's time to demystify something incredible: tractor beams. Well actually, we haven't figured

those out yet... so let's demystify something else, something that's already been happening

behind the scenes. First commit everything, with a nice message:

 Tip

Wait! Run git init  first before git add . : Symfony no longer creates a Git repo

automatically for you :)

git init

git add .

git commit -m "making so much good progress"

Installing the Security Checker

Let's install a new feature called the Symfony Security Checker. This is a great tool.... but... full

disclosure: we're mostly installing it to show off the recipe system. Ooooo. Run:

git status

Ok, there are no changes. Now run:

composer require sec-checker



 Tip

This package will only be used while developing. So, it would be even better to run

composer require sec-checker --dev .

Hello Symfony Flex

Once again, sec-checker  should not be a valid package name! So what's going on? Move

over and open composer.json :

composer.json

1

 // ... lines 2 - 3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 13

14

 // ... lines 15 - 62

63

Our project began with just a few dependencies. One of them was symfony/flex : this is

super important. Flex is a Composer plugin with two superpowers.

Flex Aliases

The first superpower is the alias system. Find your browser and go to symfony.sh.

This is the Symfony "recipe" server: we'll talk about what that means next. Search for "security".

Ah, here's a package called sensiolabs/security-checker . And below, it has aliases:

sec-check , sec-checker , security-check  and more.

Thanks to Flex, we can say composer require sec-checker , or any of these aliases, and

it will translate that into the real package name. Yep, it's just a shortcut system. But the result is

really cool. Need a logger? composer require logger . Need to send emails?

composer require mailer . Need a tractor beam? composer require , wait, no, we

can't help with that one.

{

    "require": {

        "symfony/flex": "^1.0",

    },

}

https://symfony.sh/


Back in composer.json , yep! Composer actually added

sensiolabs/security-checker :

composer.json

1

 // ... lines 2 - 14

15

16

 // ... line 17

18

 // ... lines 19 - 62

63

That's the first superpower of Flex.

Flex Recipes

The second superpower is even better: recipes. Mmmm. Go back to your terminal and... yes! It

did install and, check this out: "Symfony operations: 1 recipe". Then, "Configuring

sensiolabs/security-checker ".

What does that mean? Run:

git status

Woh! We expected composer.json  and composer.lock  to be updated. But there are also

changes to a symfony.lock  file and we suddenly have a brand new config file!

First, symfony.lock : this file is managed by Flex. It keeps track of which recipes have been

installed. Basically... commit it to git, but don't worry about it.

The second file is config/packages/dev/security_checker.yaml :

{

    "require-dev": {

        "sensiolabs/security-checker": "^4.1",

    },

}



config/packages/dev/security_checker.yaml

1

2

3

4

5

6

7

8

This was added by the recipe and, cool! It adds a new bin/console  command to our app!

Don't worry about the code itself: you'll understand and be writing code like this soon enough!

The point is this: thanks to this file, we can now run:

php bin/console security:check

Cool! This is the recipe system in action! Whenever you install a package, Flex will execute the

recipe for that package, if there is one. Recipes can add configuration files, create directories, or

even modify files like .gitignore  so that the library instantly works without any extra setup. I

love Flex.

By the way, the purpose of the security checker is that it checks to see if there are any known

vulnerabilities for packages used in our project. Right now, we're good!

But the recipe made one other change. Run:

git diff composer.json

Of course, composer require  added the package. But the recipe added a new script!

services:

    SensioLabs\Security\SecurityChecker:

        public: false

    SensioLabs\Security\Command\SecurityCheckerCommand:

        arguments: ['@SensioLabs\Security\SecurityChecker']

        tags:

            - { name: console.command }



composer.json

1

 // ... lines 2 - 40

41

42

 // ... lines 43 - 44

45

46

 // ... lines 47 - 52

53

 // ... lines 54 - 62

63

Thanks to that, whenever we run:

composer install

when it finishes, it runs the security checker automatically. So cool!

Oh, and I won't show it right now, but Flex is even smart enough to uninstall the recipes when

you remove a package. That makes testing out new packages fast and easy.

The Recipes Repository

So you might be wondering... where do these recipes live? Great question! They live... in the

cloud. I mean, they live on GitHub. On symfony.sh, click "Recipe" next to the Security checker.

Ah, it takes us to the symfony/recipes  repository. Here, you can see what files will be added

and a few other changes described in manifest.json .

All recipes either live in this repository, or another one called symfony/recipes-contrib .

There's no important difference between the two repositories: but the official recipes are

watched more closely for quality.

Next! Let's put the recipe system to work by installing Twig so we can create proper templates.

{

    "scripts": {

        "auto-scripts": {

            "security-checker security:check": "script"

        },

    },

}

https://symfony.sh/


Chapter 5: The Twig Recipe

Do you remember the only rule for a controller? It must return a Symfony Response object! But

Symfony doesn't care how you do that: you could render a template, make API requests or

make database queries and build a JSON response.

 Tip

Technically, a controller can return anything. Eventually, you'll learn how and why to do this.

Really, most of learning Symfony involves learning to install and use a bunch of powerful, but

optional, tools that make this work easier. If your app needs to return HTML, then one of these

great tools is called Twig.

Installing Twig

First, make sure you commit all of your changes so far:

git status

I already did this. Recipes are so much more fun when you can see what they do! Now run:

composer require twig

By the way, in future tutorials, our app will become a mixture of a traditional HTML app and an

API with a JavaScript front-end. So if you want to know about building an API in Symfony, we'll

get there!

This installs TwigBundle, a few other libraries and... configures a recipe! What did that recipe

do? Let's find out:



git status

Woh! Lot's of good stuff! The first change is config/bundles.php :

config/bundles.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

Bundles are the "plugin" system for Symfony. And whenever we install a third-party bundle, Flex

adds it here so that it's used automatically. Thanks Flex!

The recipe also created some stuff, like a templates/  directory! Yep, no need to guess where

templates go: it's pretty obvious! It even added a base layout file that we'll use soon.

Twig also needs some configuration, so the recipe added it in

config/packages/twig.yaml :

config/packages/twig.yaml

1

2

3

4

But even though this file was added by Flex, it's yours to modify: you can make whatever

changes you want.

Oh, and I love this! Why do our templates need to live in a templates/  directory. Is that

hardcoded deep inside Symfony? Nope! It's right here!

config/packages/twig.yaml

1

2

 // ... lines 3 - 5

Don't worry about this percent syntax yet - you'll learn about that in a future episode. But, you

can probably guess what's going on: %kernel.project_dir%  is a variable that points to the

root of the project.

return [

    Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],

];

twig:

    paths: ['%kernel.project_dir%/templates']

    debug: '%kernel.debug%'

    strict_variables: '%kernel.debug%'

twig:

    paths: ['%kernel.project_dir%/templates']



Anyways, looking at what a recipe did is a great way to learn! But the main lesson of Flex is this:

install a library and it takes care of the rest.

Now, let's go use Twig!



Chapter 6: Twig ❤

Back to work! Open ArticleController . As soon as you want to render a template, you

need to extend a base class: AbstractController :

src/Controller/ArticleController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 27

28

Obviously, your controller does not need to extend this. But they usually will... because this

class gives you shortcut methods! The one we want is return $this->render() . Pass it a

template filename: how about article/show.html.twig  to be consistent with the controller

name. The second argument is an array of variables that you want to pass into your template:

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

 // ... line 25

26

27

28

Eventually, we're going to load articles from the database. But... hang on! We're not quite ready

yet. So let's fake it 'til we make it! Pass a title  variable set to a title-ized version of the slug:

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class ArticleController extends AbstractController

{

}

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        return $this->render('article/show.html.twig', [

        ]);

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

25

26

27

28

Great! Let's go add that template! Inside templates/ , create an article  directory then the

file: show.html.twig .

Add an h1 , then print that title  variable: {{ title }} :

templates/article/show.html.twig

1

 // ... lines 2 - 16

Twig Basics

If you're new to Twig, welcome! You're going to love it! Twig only has 2 syntaxes. The first is

{{ }} . I call this the "say something" tag, because it prints. And just like PHP, you can print

anything: a variable, a string or a complex expression.

The second syntax is {% %} . I call this the "do something" tag. It's used whenever you need to,

um, do something, instead of printing, like an if  statement or for  loop. We'll look at the full

list of do something tags in a minute.

And... yea, that's it! Well, ok, I totally lied. There is a third syntax: {# #} : comments!

At the bottom of this page, I'll paste some extra hard-coded content to spice things up!

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        return $this->render('article/show.html.twig', [

            'title' => ucwords(str_replace('-', ' ', $slug)),

        ]);

    }

}

<h1>{{ title }}</h1>



templates/article/show.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Let's go try it! Find your browser and refresh! Boom! We have content!

But check it out: if you view the page source... it's just this content: we don't have any layout or

HTML structure yet. But, we will soon!

Looping with for

Go back to your controller. Eventually, users will need to be able to comment on the articles, so

they can respectfully debate the article's conclusions based on objective analysis and research.

Ya know... no different than any other news commenting section. Ahem.

<h1>{{ title }}</h1>

<div>

    <p>

        Bacon ipsum dolor amet filet mignon picanha kielbasa jowl 

hamburger shankle biltong chicken turkey pastrami cupim pork chop. Chicken 

andouille prosciutto capicola picanha, brisket t-bone. Tri-tip pig pork 

chop short ribs frankfurter pork ham. Landjaeger meatball meatloaf, 

kielbasa strip steak leberkas picanha swine chicken pancetta pork loin 

hamburger pork.

    </p>

    <p>

        Kielbasa pork belly meatball cupim burgdoggen chuck turkey buffalo 

ground round leberkas cow shank short loin bacon alcatra. Leberkas short 

loin boudin swine, ham hock bresaola turducken tail pastrami picanha 

pancetta andouille rump landjaeger bacon. Pastrami swine rump meatball 

filet mignon turkey alcatra. Picanha filet mignon ground round tongue ham 

hock ball tip tri-tip, prosciutto leberkas kielbasa short loin short ribs 

drumstick. Flank pig kielbasa short loin jerky ham hock turducken 

prosciutto t-bone salami pork jowl.

    </p>

    <p>

        Pastrami short loin pork chop, chicken kielbasa swine turducken 

jerky short ribs beef. Short ribs alcatra shoulder, flank pork chop 

shankle t-bone. Tail rump pork chop boudin pig, chicken porchetta. Shank 

doner biltong, capicola brisket sausage meatloaf beef ribs kevin beef rump 

ribeye t-bone. Shoulder cupim meatloaf, beef kevin frankfurter picanha 

bacon. Frankfurter bresaola chuck kevin buffalo strip steak pork loin beef 

ribs prosciutto picanha shankle. Drumstick prosciutto pancetta beef ribs.

    </p>

</div>



I'll paste in 3 fake comments. Add a second variable called comments  to pass these into the

template:

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

25

26

27

28

29

30

 // ... line 31

32

33

34

35

This time, we can't just print that array: we need to loop over it. At the bottom, and an h2  that

says "Comments" and then add a ul :

templates/article/show.html.twig

 // ... lines 1 - 16

17

18

19

 // ... lines 20 - 22

23

To loop, we need our first do something tag! Woo! Use {% for comment in comments %} .

Most "do" something tags also have a closing tag: {% endfor %} :

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        $comments = [

            'I ate a normal rock once. It did NOT taste like bacon!',

            'Woohoo! I\'m going on an all-asteroid diet!',

            'I like bacon too! Buy some from my site! bakinsomebacon.com',

        ];

        return $this->render('article/show.html.twig', [

            'comments' => $comments,

        ]);

    }

}

<h2>Comments</h2>

<ul>

</ul>



templates/article/show.html.twig

 // ... lines 1 - 16

17

18

19

20

 // ... line 21

22

23

Inside the loop, comment  represents the individual comment. So, just print it:

{{ comment }} :

templates/article/show.html.twig

 // ... lines 1 - 16

17

18

19

20

21

22

23

Try it! Brilliant! I mean, it's really ugly... oof. But we'll fix that later.

The Amazing Twig Reference

Go to twig.symfony.com and click on the Documentation link. Scroll down a little until you see a

set of columns: the Twig Reference.

This is awesome! See the tags on the left? That is the entire list of possible "do something"

tags. Yep, it will always be {%  and then one of these: for , if , extends , tractorbeam .

And honestly, you're only going to use about 5 of these most of the time.

Twig also has functions... which work like every other language - and a cool thing called "tests".

Those are a bit unique, but not too difficult, they allow you to say things like

if foo is defined  or... if space is empty .

The most useful part of this reference is the filter section. Filters are like functions but with a

different, way more hipster syntax. Let's try our the |length  filter.

<h2>Comments</h2>

<ul>

    {% for comment in comments %}

    {% endfor %}

</ul>

<h2>Comments</h2>

<ul>

    {% for comment in comments %}

        <li>{{ comment }}</li>

    {% endfor %}

</ul>

https://twig.symfony.com/
https://twig.symfony.com/doc/2.x/#reference


Go back to our template. I want to print out the total number of comments. Add a set of

parentheses and then say {{ comments|length }} :

templates/article/show.html.twig

 // ... lines 1 - 16

17

 // ... lines 18 - 24

That is a filter: the comments  value passes from the left to right, just like a Unix pipe. The

length  filter counts whatever was passed to it, and we print the result. You can even use

multiple filters!

 Tip

To unnecessarily confuse your teammates, try using the upper  and lower  filters over and

over again: {{ name|upper|lower|upper|lower|upper }} !

Template Inheritance

Twig has one last killer feature: it's template inheritance system. Because remember! We don't

yet have a real HTML page: just the content from the template.

To fix this, at the top of the template, add {% extends 'base.html.twig' %} :

templates/article/show.html.twig

1

 // ... lines 2 - 26

This refers to the base.html.twig  file that was added by the recipe:

<h2>Comments ({{ comments|length }})</h2>

{% extends 'base.html.twig' %}



templates/base.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

It's simple now, but this is our layout file and we'll customize it over time. By extending it, we

should at least get this basic HTML structure.

But when we refresh... surprise! An error! And probably one that you'll see at some point!

“A template that extends another one cannot include content outside Twig blocks”

Huh. Look at the base template again: it's basically an HTML layout plus a bunch of blocks...

most of which are empty. When you extend a template, you're telling Twig that you want to put

your content inside of that template. The blocks, are the "holes" into which our child template

can put content. For example, there's a block called body , and that's really where we want to

put our content:

templates/base.html.twig

1

2

 // ... lines 3 - 7

8

9

 // ... line 10

11

12

To do that, we need to override that block. At the top of the content, add {% block body %} ,

and at the bottom, {% endblock %} :

<!DOCTYPE html>

<html>

    <head>

        <meta charset="UTF-8">

        <title>{% block title %}Welcome!{% endblock %}</title>

        {% block stylesheets %}{% endblock %}

    </head>

    <body>

        {% block body %}{% endblock %}

        {% block javascripts %}{% endblock %}

    </body>

</html>

<!DOCTYPE html>

<html>

    <body>

        {% block body %}{% endblock %}

    </body>

</html>



templates/article/show.html.twig

1

2

3

4

 // ... lines 5 - 21

22

23

24

25

26

27

Now our content should go inside of that block in base.html.twig . Try it! Refresh! Yes! Well,

it doesn't look any different, but we do have a proper HTML body.

More about Blocks

You're completely free to customize this template as much as you want: rename the blocks, add

more blocks, and, hopefully, make the site look less ugly!

Oh, and most of the time, the blocks are empty. But you can give the block some default

content, like with title :

templates/base.html.twig

1

2

3

 // ... line 4

5

 // ... line 6

7

 // ... lines 8 - 11

12

Yep, the browser tab's title is Welcome .

Let's override that! At the top... or really, anywhere, add {% block title %} . Then say

Read , print the title  variable, and {% endblock %} :

{% extends 'base.html.twig' %}

{% block body %}

<h1>{{ title }}</h1>

<ul>

    {% for comment in comments %}

        <li>{{ comment }}</li>

    {% endfor %}

</ul>

{% endblock %}

<!DOCTYPE html>

<html>

    <head>

        <title>{% block title %}Welcome!{% endblock %}</title>

    </head>

</html>



templates/article/show.html.twig

1

2

3

 // ... lines 4 - 30

Try that! Yes! The page title changes. And... voilà! That's Twig. You're going to love it.

 Go Deeper!

Check out another screencast from us to learn more about Twig

Next let's check out one of Symfony's most killer features: the profiler.

{% extends 'base.html.twig' %}

{% block title %}Read: {{ title }}{% endblock %}

https://knpuniversity.com/screencast/twig


Chapter 7: Web Debug Toolbar & the Profiler!

Make sure you've committed all of your changes - I already did. Because we're about to install

something super fun! Like, floating around space fun! Run:

composer require profiler --dev

The profiler - also called the "web debug toolbar" is probably the most awesome thing in

Symfony. This installs a few packages and... one recipe! Run:

git status

Ok cool! It added a couple of configuration files and even some routes in the dev  environment

only that help the profiler work. So... what the heck is the profiler? Go back to your browser,

make sure you're on the article show page and refresh! Voilà!

Hello Web Debug Toolbar!

See that slick black bar at the bottom of the page! That's the web debug toolbar! It's now

automatically injected at the bottom of any valid HTML page during development. Yep, this

JavaScript code makes an AJAX call that loads it.

Oh, and it's packed with info, like which route was matched, what controller was executed,

execution time, cache details and even information about templates.

And as we install more libraries, we're going to get even more icons! But the really awesome

thing is that you can click any of these icons to go into... the profiler.

Hello Profiler: The Toolbar's Powerful Sidekick



OoooOoo. This takes us to a totally different page. The profiler is like the web debug toolbar

with a fusion reactor taped onto it. The Twig tab shows exactly which templates were rendered.

We can also get detailed info about caching, routing and events, which we'll talk about in a

future tutorial. Oh, and my personal favorite: Performance! This shows you how long each part

of the request took, including the controller. In another tutorial, we'll use this to dig into exactly

how Symfony works under the hood.

When you're ready to go back to the original page, you can click the link at the top.

Magic with The dump() Function

But wait, there's more! The profiler also installed Symfony's var-dumper  component. Find

ArticleController  and go to showAction() . Normally, to debug, I'll use var_dump()

to print some data. But, no more! Instead, use dump() : dump the $slug  and also the

controller object itself:

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

 // ... lines 24 - 28

29

 // ... lines 30 - 34

35

36

Ok, refresh! Beautiful, colored output. And, you can expand objects to dig deeper into them.

 Tip

To expand all the nested nodes just press Ctrl  and click the arrow.

Using dump() in Twig

The dump()  function is even more useful in Twig. Inside the body  block, add

{{ dump() }} :

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        dump($slug, $this);

    }

}



templates/article/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 29

30

 Tip

If you don't have Xdebug installed, this might fail with a memory issue. But don't worry! In

the next chapter, we'll install a tool to make this even better.

In Twig, you're allowed to use dump()  with no arguments. And that's especially useful. Why?

Because it dumps an associative array of all of the variables you have access to. We already

knew we had title  and comments  variables. But apparently, we also have an app  variable!

Actually, every template gets this app  variable automatically. Good to know!

But! Symfony has even more debugging tools! Let's get them and learn about "packs" next!

{% block body %}

{{ dump() }}

{% endblock %}



Chapter 8: Debugging & Packs

Symfony has even more debugging tools. The easiest way to get all of them is to find your

terminal and run:

composer require debug --dev

Find your browser, surf back to symfony.sh and search for "debug". Ah, so the debug  alias will

actually install a package called symfony/debug-pack . So... what's a pack?

Click to look at the package details, and then go to its GitHub repository.

Whoa! It's just a single file: composer.json ! Inside, it requires six other libraries!

Sometimes, you're going to want to install several packages at once related to one feature. To

make that easy, Symfony has a number of "packs", and their whole purpose is give you one

easy package that actually installs several other libraries.

In this case, composer require debug  will install Monolog - a logging library,

phpunit-bridge  - for testing, and even the profiler-pack  that we already installed

earlier.

If you go back to the terminal... yep! It downloaded all those libraries and configured a few

recipes.

And... check this out! Refresh! Hey! Our Twig dump()  got prettier! The debug-pack

integrated everything together even better.

Unpacking the Pack!

Go back to your Twig template and remove that dump. Then, open composer.json . We just

installed two packs: the debug-pack  and the profiler-pack :

https://symfony.sh/


composer.json

1

 // ... lines 2 - 15

16

 // ... line 17

18

 // ... line 19

20

21

 // ... lines 22 - 65

66

And we now know that the debug-pack  is actually a collection of about 6 libraries.

But, packs have a disadvantage... a "dark side". What if you wanted to control the version of just

one of these libraries? Or what if you wanted most of these libraries, but you didn't want, for

example, the phpunit-bridge . Well... right now, there's no way to do that: all we have is this

one debug-pack  line.

Don't worry brave space traveler! Just... unpack the pack! Yep, at your terminal, run:

composer unpack debug

The unpack  command comes from Symfony flex. And... interesting! All it says is "removing

symfony/debug-pack". But if you look at your composer.json :

composer.json

1

 // ... lines 2 - 15

16

17

 // ... line 18

19

 // ... line 20

21

22

23

24

25

 // ... lines 26 - 69

70

{

    "require-dev": {

        "symfony/debug-pack": "^1.0",

        "symfony/profiler-pack": "^1.0"

    },

}

{

    "require-dev": {

        "easycorp/easy-log-handler": "^1.0.2",

        "symfony/debug-bundle": "^3.3|^4.0",

        "symfony/monolog-bundle": "^3.0",

        "symfony/phpunit-bridge": "^3.3|^4.0",

        "symfony/profiler-pack": "^1.0",

        "symfony/var-dumper": "^3.3|^4.0"

    },

}



Ah! It did remove symfony/debug-pack , but it replaced it with the 6 libraries from that pack!

We can now control the versions or even remove individual libraries if we don't want them.

That is the power of packs!



Chapter 9: Assets: CSS & JavaScript

Even astronauts - who generally spend their time staring into the black absyss - demand a site

that is less ugly than this! Let's fix that!

If you download the course code from the page that you're watching this video on right now,

inside the zip file, you'll find a start/  directory. And inside that, you'll see the same

tutorial/  directory that I have here. And inside that... I've created a new

base.html.twig . Copy that and overwrite our version in templates/ :



templates/base.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<!doctype html>

<html lang="en">

    <head>

        <title>{% block title %}Welcome to the SpaceBar{% endblock %}

</title>

        <meta charset="utf-8">

        <meta name="viewport" content="width=device-width, initial-

scale=1, shrink-to-fit=no">

        {% block stylesheets %}

            <link rel="stylesheet" 

href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/css/bootstrap.min.css" integrity="sha384-

PsH8R72JQ3SOdhVi3uxftmaW6Vc51MKb0q5P2rRUpPvrszuE4W1povHYgTpBfshb" 

crossorigin="anonymous">

        {% endblock %}

    </head>

    <body>

        <nav class="navbar navbar-expand-lg navbar-dark navbar-bg mb-5">

            <a style="margin-left: 75px;" class="navbar-brand space-brand" 

href="#">The Space Bar</a>

            <button class="navbar-toggler" type="button" data-

toggle="collapse" data-target="#navbarNavDropdown" aria-

controls="navbarNavDropdown" aria-expanded="false" aria-label="Toggle 

navigation">

            <span class="navbar-toggler-icon"></span>

          </button>

            <div class="collapse navbar-collapse" id="navbarNavDropdown">

                <ul class="navbar-nav mr-auto">

                     <li class="nav-item">

                       <a style="color: #fff;" class="nav-link" 

href="#">Local Asteroids</a>

                     </li>

                     <li class="nav-item">

                       <a style="color: #fff;" class="nav-link" 

href="#">Weather</a>

                     </li>

                   </ul>

                <form class="form-inline my-2 my-lg-0">

                    <input class="form-control mr-sm-2" type="search" 

placeholder="Search" aria-label="Search">

                    <button class="btn btn-info my-2 my-sm-0" 

type="submit">Search</button>

                </form>

                <ul class="navbar-nav ml-auto">



34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

                    <li class="nav-item dropdown" style="margin-right: 

75px;">

                        <a class="nav-link dropdown-toggle" 

href="http://example.com" id="navbarDropdownMenuLink" data-

toggle="dropdown" aria-haspopup="true" aria-expanded="false">

                  <img class="nav-profile-img rounded-circle" 

src="images/astronaut-profile.png">

                </a>

                        <div class="dropdown-menu" aria-

labelledby="navbarDropdownMenuLink">

                            <a class="dropdown-item" href="#">Profile</a>

                            <a class="dropdown-item" href="#">Create 

Post</a>

                            <a class="dropdown-item" href="#">Logout</a>

                        </div>

                    </li>

                </ul>

            </div>

        </nav>

        {% block body %}{% endblock %}

        <footer class="footer">

            <div class="container text-center">

                <span class="text-muted">Made with <i class="fa fa-heart" 

style="color: red;"></i> by the guys and gals at <a 

href="https://knpuniversity.com">KnpUniversity</a></span>

            </div>

        </footer>

        {% block javascripts %}

            <script src="https://code.jquery.com/jquery-3.2.1.min.js" 

integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" 

crossorigin="anonymous"></script>

            <script 

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.3/umd/popper.min.

integrity="sha384-

vFJXuSJphROIrBnz7yo7oB41mKfc8JzQZiCq4NCceLEaO4IHwicKwpJf9c9IpFgh" 

crossorigin="anonymous"></script>

            <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ" 

crossorigin="anonymous"></script>

            <script>

                $('.dropdown-toggle').dropdown();

            </script>

        {% endblock %}

    </body>



66

On a technical level, this is basically the same as before: it has the same blocks: title

stylesheets , body  and javascripts  at the bottom. But now, we have a nice HTML layout

that's styled with Bootstrap.

If you refresh, it should look better. Woh! No change! Weird! Actually... this is more weird than

you might think. Find your terminal and remove the var/cache/dev  directory:

rm -rf var/cache/dev/*

What the heck is this? Internally, Symfony caches things in this directory. And... you normally

don't need to think about this at all: Symfony is smart enough during development to

automatically rebuild this cache whenever necessary. So... why am I manually clearing it?

Well... because we copied my file... and because its "last modified" date is older than our

original base.html.twig , Twig gets confused and thinks that the template was not updated.

Seriously, this is not something to worry about in any other situation.

Referencing CSS Files

And when we refresh... there it is! Ok, it's still pretty ugly. That's because we're missing some

CSS files!

In the tutorial/  directory, I've also prepped some css/ , fonts/  and images/ . All of

these files need to be accessed by the user's browser, and that means they must live inside

public/ . Open that directory and paste them there.

By the way, Symfony has an awesome tool called Webpack Encore that helps process,

combine, minify and generally do amazing things with your CSS and JS files. We are going to

talk about Webpack Encore... but in a different tutorial. For now, let's get things setup with

normal, static files.

The two CSS files we want to include are font-awesome.css  and styles.css . And we

don't need to do anything complex or special! In base.html.twig , find the stylesheets

block and add a link  tag.

</html>

https://github.com/symfony/webpack-encore


But wait, why exactly are we adding the link  tag inside the stylesheets  block? Is that

important? Well, technically... it doesn't matter: a link  tag can live anywhere in head . But

later, we might want to add additional CSS files on specific pages. By putting the link  tags

inside this block, we'll have more flexibility to do that. Don't worry: we're going to see an

example of this with a JavaScript file soon.

So... what path should we use? Since public/  is the document root, it should just be

/css/font-awesome.css :

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

 // ... line 10

11

 // ... line 12

13

14

 // ... lines 15 - 67

68

Do the same thing for the other file: /css/styles.css :

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

 // ... line 10

11

12

13

14

 // ... lines 15 - 67

68

It's that simple! Refresh! Still not perfect, but much better!

<!doctype html>

<html lang="en">

    <head>

        {% block stylesheets %}

            <link rel="stylesheet" href="/css/font-awesome.css">

        {% endblock %}

    </head>

</html>

<!doctype html>

<html lang="en">

    <head>

        {% block stylesheets %}

            <link rel="stylesheet" href="/css/font-awesome.css">

            <link rel="stylesheet" href="/css/styles.css">

        {% endblock %}

    </head>

</html>



The Not-So-Mystical asset Function

And now I'm going to slightly complicate things. Go back into PhpStorm's Preferences, search

for "Symfony" and find the "Symfony" plugin. Change the "web" directory to public  - it was

called web  in Symfony 3.

This is not required, but it will give us more auto-completion when working with assets. Delete

the "font-awesome" path, re-type it, and hit tab to auto-complete:

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

 // ... line 10

11

 // ... line 12

13

14

 // ... lines 15 - 67

68

Woh! It wrapped the path in a Twig asset()  function! Do the same thing below for

styles.css :

templates/base.html.twig

1

2

3

4

 // ... lines 5 - 8

9

 // ... line 10

11

12

13

14

 // ... lines 15 - 67

68

<!doctype html>

<html lang="en">

    <head>

        {% block stylesheets %}

            <link rel="stylesheet" href="{{ asset('css/font-awesome.css') 

}}">

        {% endblock %}

    </head>

</html>

<!doctype html>

<html lang="en">

    <head>

        {% block stylesheets %}

            <link rel="stylesheet" href="{{ asset('css/font-awesome.css') 

}}">

            <link rel="stylesheet" href="{{ asset('css/styles.css') }}">

        {% endblock %}

    </head>

</html>



Here's the deal: whenever you link to a static asset - CSS, JS or images - you should wrap the

path in this asset()  function. But... it's not really that important. In fact, right now, it doesn't do

anything: it will print the same path as before. But! In the future, the asset()  function will give

us more flexibility to version our assets or store them on a CDN.

In other words: don't worry about it too much, but do remember to use it!

Installing the asset Component

Actually, the asset()  function does do something immediately - it breaks our site! Refresh!

Ah!

The asset()  function comes from a part of Symfony that we don't have installed yet. Fix that

by running:

composer require asset

This installs the symfony/asset  component. And as soon as Composer is done... we can

refresh, and it works! To prove that the asset()  function isn't doing anything magic, you can

look at the link  tag in the HTML source: it's the same boring /css/styles.css .

There is one other spot where we need to use asset() . In the layout, search for img . Ah, an

img  tag! Remove the src  and re-type astronaut-profile :



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

 // ... lines 18 - 21

22

 // ... lines 23 - 34

35

36

37

38

39

 // ... lines 40 - 44

45

46

47

48

 // ... lines 49 - 66

67

68

Perfect! Refresh and enjoy our new avatar on the user menu. There's a lot of hardcoded data,

but we'll make this dynamic over time.

Styling the Article Page

The layout is looking great! But the inside of the page... yea... that's still pretty terrible. Back in

the tutorial/  directory, there is also an article.html.twig  file. Don't copy this entire file

- just copy its contents. Close it and open show.html.twig . Paste the new code at the top of

the body  block:

<!doctype html>

<html lang="en">

    <body>

        <nav class="navbar navbar-expand-lg navbar-dark navbar-bg mb-5">

            <div class="collapse navbar-collapse" id="navbarNavDropdown">

                <ul class="navbar-nav ml-auto">

                    <li class="nav-item dropdown" style="margin-right: 

75px;">

                        <a class="nav-link dropdown-toggle" 

href="http://example.com" id="navbarDropdownMenuLink" data-

toggle="dropdown" aria-haspopup="true" aria-expanded="false">

                  <img class="nav-profile-img rounded-circle" src="{{ 

asset('images/astronaut-profile.png') }}">

                </a>

                    </li>

                </ul>

            </div>

        </nav>

    </body>

</html>



templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <img class="show-article-img" src="{{ 

asset('images/asteroid.jpeg') }}">

                        <div class="show-article-title-container d-inline-

block pl-3 align-middle">

                            <span class="show-article-title ">Why do 

Asteroids Taste Like Bacon?</span>

                            <br>

                            <span class="align-left article-details"><img 

class="article-author-img rounded-circle" src="{{ asset('images/alien-

profile.png') }}"> Mike Ferengi </span>

                            <span class="pl-2 article-details"> 3 hours 

ago</span>

                            <span class="pl-2 article-details"> 5 <a 

href="#" class="fa fa-heart-o like-article"></a> </span>

                        </div>

                    </div>

                </div>

                <div class="row">

                    <div class="col-sm-12">

                        <div class="article-text">

                            <p>Spicy jalapeno bacon ipsum dolor amet 

veniam shank in dolore. Ham hock nisi landjaeger cow,

                                lorem proident beef ribs aute enim veniam 

ut cillum pork chuck picanha. Dolore reprehenderit

                                labore minim pork belly spare ribs cupim 

short loin in. Elit exercitation eiusmod dolore cow

                                turkey shank eu pork belly meatball non 

cupim.</p>

                            <p>Laboris beef ribs fatback fugiat eiusmod 

jowl kielbasa alcatra dolore velit ea ball tip. Pariatur

                                laboris sunt venison, et laborum dolore 

minim non meatball. Shankle eu flank aliqua shoulder,

                                capicola biltong frankfurter boudin cupim 

officia. Exercitation fugiat consectetur ham. Adipisicing

                                picanha shank et filet mignon pork belly 

ut ullamco. Irure velit turducken ground round doner incididunt



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

                                occaecat lorem meatball prosciutto quis 

strip steak.</p>

                            <p>Meatball adipisicing ribeye bacon strip 

steak eu. Consectetur ham hock pork hamburger enim strip steak

                                mollit quis officia meatloaf tri-tip 

swine. Cow ut reprehenderit, buffalo incididunt in filet mignon

                                strip steak pork belly aliquip capicola 

officia. Labore deserunt esse chicken lorem shoulder tail consectetur

                                cow est ribeye adipisicing. Pig hamburger 

pork belly enim. Do porchetta minim capicola irure pancetta chuck

                                fugiat.</p>

                            <p>Sausage tenderloin officia jerky nostrud. 

Laborum elit pastrami non, pig kevin buffalo minim ex quis. Pork belly

                                pork chop officia anim. Irure tempor 

leberkas kevin adipisicing cupidatat qui buffalo ham aliqua pork belly

                                exercitation eiusmod. Exercitation 

incididunt rump laborum, t-bone short ribs buffalo ut shankle pork chop

                                bresaola shoulder burgdoggen fugiat. 

Adipisicing nostrud chicken consequat beef ribs, quis filet mignon do.

                                Prosciutto capicola mollit shankle aliquip 

do dolore hamburger brisket turducken eu.</p>

                            <p>Do mollit deserunt prosciutto laborum. Duis 

sint tongue quis nisi. Capicola qui beef ribs dolore pariatur.

                                Minim strip steak fugiat nisi est, 

meatloaf pig aute. Swine rump turducken nulla sausage. Reprehenderit pork

                                belly tongue alcatra, shoulder excepteur 

in beef bresaola duis ham bacon eiusmod. Doner drumstick short loin,

                                adipisicing cow cillum tenderloin.</p>

                        </div>

                    </div>

                </div>

                <div class="row">

                    <div class="col-sm-12">

                        <p class="share-icons mb-5"><span class="pr-

1">Share:</span> <i class="pr-1 fa fa-facebook-square"></i><i class="pr-1 

fa fa-twitter-square"></i><i class="pr-1 fa fa-reddit-square"></i><i 

class="pr-1 fa fa-share-alt-square"></i></p>

                    </div>

                </div>

                <div class="row">

                    <div class="col-sm-12">

                        <h3><i class="pr-3 fa fa-comment"></i>10 

Comments</h3>

                        <hr>

                        <div class="row mb-5">



67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

 // ... lines 99 - 122

Check it out in your browser. Yep! It looks cool... but all of this info is hardcoded. I mean, that

article name is just static text.

                            <div class="col-sm-12">

                                <img class="comment-img rounded-circle" 

src="{{ asset('images/astronaut-profile.png') }}">

                                <div class="comment-container d-inline-

block pl-3 align-top">

                                    <span class="commenter-name">Amy 

Oort</span>

                                    <div class="form-group">

                                        <textarea class="form-control 

comment-form" id="articleText" rows="1"></textarea>

                                    </div>

                                    <button type="submit" class="btn btn-

info">Comment</button>

                                </div>

                            </div>

                        </div>

                        <div class="row">

                            <div class="col-sm-12">

                                <img class="comment-img rounded-circle" 

src="{{ asset('images/alien-profile.png') }}">

                                <div class="comment-container d-inline-

block pl-3 align-top">

                                    <span class="commenter-name">Mike 

Ferengi</span>

                                    <br>

                                    <span class="comment"> Now would this 

be apple wood smoked bacon? Or traditional bacon - IMHO it makes a 

difference.</span>

                                    <p><a href="#">Reply</a></p>

                                </div>

                            </div>

                        </div>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

<h1>{{ title }}</h1>



Let's take the dynamic code that we have at the bottom and work it into the new HTML. For the

title, use {{ title }} :

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... line 13

14

15

 // ... lines 16 - 19

20

21

22

 // ... lines 23 - 94

95

96

97

98

99

100

Below, it prints the number of comments. Replace that with {{ comments|length }} :

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <div class="show-article-title-container d-inline-

block pl-3 align-middle">

                            <span class="show-article-title ">{{ title }}

</span>

                        </div>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}



templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 60

61

62

63

 // ... lines 64 - 92

93

94

95

96

97

98

99

100

Oh, and at the bottom, there is a comment box and one actual comment. Let's find this and...

add a loop! For comment in comments  on top, and endfor  at the bottom. For the actual

comment, use {{ comment }} :

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <h3><i class="pr-3 fa fa-comment"></i>{{ 

comments|length }} Comments</h3>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}



templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

 // ... lines 11 - 60

61

62

 // ... lines 63 - 78

79

80

81

 // ... line 82

83

 // ... lines 84 - 85

86

 // ... line 87

88

89

90

91

92

93

94

95

96

97

98

99

100

Delete the old code from the bottom... oh, but don't delete the endblock :

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 97

98

99

100

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        {% for comment in comments %}

                        <div class="row">

                            <div class="col-sm-12">

                                <div class="comment-container d-inline-

block pl-3 align-top">

                                    <span class="comment"> {{ comment }}

</span>

                                </div>

                            </div>

                        </div>

                        {% endfor %}

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}

{% block body %}

<div class="container">

</div>

{% endblock %}



Let's try it - refresh! It looks awesome! A bunch of things are still hardcoded, but this is much

better.

It's time to make our homepage less ugly and learn about the second job of routing: route

generation for linking.



Chapter 10: Generating URLs

Most of these links don't go anywhere yet. Whatever! No problem! We're going to fill them in as

we continue. Besides, most of our users will be in hypersleep for at least a few more decades.

But we can hook up some of these - like the "Space Bar" logo text - that should go to the

homepage.

Open templates/base.html.twig  and search for "The Space Bar":

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

 // ... lines 19 - 47

48

 // ... lines 49 - 66

67

68

Ok - let's point this link to the homepage. And yep, we could just say href="/" .

But... there's a better way. Instead, we're going to generate a URL to the route. Yep, we're going

to ask Symfony to give us the URL to the route that's above our homepage action:

<!doctype html>

<html lang="en">

    <body>

        <nav class="navbar navbar-expand-lg navbar-dark navbar-bg mb-5">

            <a style="margin-left: 75px;" class="navbar-brand space-brand" 

href="#">The Space Bar</a>

        </nav>

    </body>

</html>



src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... line 16

17

 // ... lines 18 - 34

35

Why? Because if we ever decided to change this route's URL - like to /news  - if we generate

the URL instead of hardcoding it, all the links will automatically update. Magic!

The Famous debug:router

So how can we do this? First, find your terminal and run:

./bin/console debug:router

This is an awesome little tool that shows you a list of all of the routes in your app. You can see

our two routes and a bunch of routes that help the profiler and web debug toolbar.

There's one thing about routes that we haven't really talked about yet: each route has an

internal name. This is never shown to the user, it only exists so that we can refer to that route in

our code. For annotation routes, by default, that name is created for us.

Generating URLs with path()

This means, to generate a URL to the homepage, copy the route name, go back to

base.html.twig , add {{ path() }}  and paste the route name:

class ArticleController extends AbstractController

{

    /**

     * @Route("/")

     */

    public function homepage()

    {

    }

}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

 // ... lines 19 - 47

48

 // ... lines 49 - 66

67

68

That's it!

Refresh! Click it! Yes! We're back on the homepage.

But... actually I don't like to rely on auto-created route names because they could change if we

renamed certain parts of our code. Instead, as soon as I want to generate a URL to a route, I

add a name option: name="app_homepage" :

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... line 16

17

 // ... lines 18 - 34

35

Run debug:router  again:

./bin/console debug:router

The only thing that changed is the name of the route. Now go back to base.html.twig  and

use the new route name here:

<!doctype html>

<html lang="en">

    <body>

        <nav class="navbar navbar-expand-lg navbar-dark navbar-bg mb-5">

            <a style="margin-left: 75px;" class="navbar-brand space-brand" 

href="{{ path('app_article_homepage') }}">The Space Bar</a>

        </nav>

    </body>

</html>

class ArticleController extends AbstractController

{

    /**

     * @Route("/", name="app_homepage")

     */

    public function homepage()

    {

    }

}



templates/base.html.twig

1

2

 // ... lines 3 - 15

16

17

18

 // ... lines 19 - 47

48

 // ... lines 49 - 66

67

68

It still works exactly like before, but we're in complete control of the route name.

Making the Homepage Pretty

We now have a link to our homepage... but I don't know why you'd want to go here: it's super

ugly! So let's render a template. In ArticleController , instead of returning a Response ,

return $this->render()  with article/homepage.html.twig :

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

16

17

 // ... lines 18 - 34

35

For now, don't pass any variables to the template.

This template does not exist yet. But if you look again in the tutorial/  directory from the

code download, I've created a homepage template for us. Sweet! Copy that and paste it into

templates/article :

<!doctype html>

<html lang="en">

    <body>

        <nav class="navbar navbar-expand-lg navbar-dark navbar-bg mb-5">

            <a style="margin-left: 75px;" class="navbar-brand space-brand" 

href="{{ path('app_homepage') }}">The Space Bar</a>

        </nav>

    </body>

</html>

class ArticleController extends AbstractController

{

    /**

     * @Route("/", name="app_homepage")

     */

    public function homepage()

    {

        return $this->render('article/homepage.html.twig');

    }

}



templates/article/homepage.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

{% extends 'base.html.twig' %}

{% block body %}

    <div class="container">

        <div class="row">

            <!-- Article List -->

            <div class="col-sm-12 col-md-8">

                <!-- H1 Article -->

                <a class="main-article-link" href="#">

                    <div class="main-article mb-5 pb-3">

                        <img src="{{ asset('images/meteor-shower.jpg') }}" 

alt="meteor shower">

                        <h1 class="text-center mt-2">Ursid Meteor Shower: 

<br>Healthier than a regular shower?</h1>

                    </div>

                </a>

                <!-- Supporting Articles -->

                <div class="article-container my-1">

                    <a href="#">

                        <img class="article-img" src="{{ 

asset('images/asteroid.jpeg') }}">

                        <div class="article-title d-inline-block pl-3 

align-middle">

                            <span>Why do Asteroids Taste Like Bacon?

</span>

                            <br>

                            <span class="align-left article-details"><img 

class="article-author-img rounded-circle" src="{{ asset('images/alien-

profile.png') }}"> Mike Ferengi </span>

                            <span class="pl-5 article-details float-

right"> 3 hours ago</span>

                        </div>

                    </a>

                </div>

                <div class="article-container my-1">

                    <a href="#">

                        <img class="article-img"  src="{{ 

asset('images/mercury.jpeg') }}">

                        <div class="article-title d-inline-block pl-3 

align-middle">



37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

                            <span>Life on Planet Mercury: <br> Tan, 

Relaxing and Fabulous</span>

                            <br>

                            <span class="align-left article-details"><img 

class="article-author-img rounded-circle" src="{{ asset('images/astronaut-

profile.png') }}"> Amy Oort </span>

                            <span class="pl-5 article-details float-

right"> 6 days ago</span>

                        </div>

                    </a>

                </div>

                <div class="article-container my-1">

                    <a href="#">

                        <img class="article-img" src="{{ 

asset('images/lightspeed.png') }}">

                        <div class="article-title d-inline-block pl-3 

align-middle">

                            <span>Light Speed Travel: <br> Fountain of 

Youth or Fallacy</span>

                            <br>

                            <span class="align-left article-details"><img 

class="article-author-img rounded-circle" src="{{ asset('images/astronaut-

profile.png') }}"> Amy Oort </span>

                            <span class="pl-5 article-details float-

right"> 2 weeks ago</span>

                        </div>

                    </a>

                </div>

            </div>

            <!-- Right bar ad space -->

            <div class="col-sm-12 col-md-4 text-center">

                <div class="ad-space mx-auto mt-1 pb-2 pt-2">

                    <img class="advertisement-img" src="{{ 

asset('images/space-ice.png') }}">

                    <p><span class="advertisement-text">New:</span> Space 

Ice Cream!</p>

                    <button class="btn btn-info">Buy Now!</button>

                </div>

                <div class="quote-space pb-2 pt-2 px-5">

                    <h3 class="text-center pb-3">Trending Quotes</h3>

                    <p><i class="fa fa-comment"></i> "Our two greatest 

problems are gravity and paperwork. We can lick gravity, but sometimes the 

paperwork is overwhelming." <br>— <a 



72

73

74

75

76

77

78

79

80

It's nothing special: just a bunch of hardcoded information and fascinating space articles. It does

make for a pretty cool-looking homepage. And yea, we'll make this all dynamic once we have a

database.

Generating a URL with a {wildcard}

One of the hardcoded articles is the one we've been playing with: Why Asteroids Taste like

Bacon! The link doesn't go anywhere yet, so let's fix that by generating a URL to our article

show page!

Step 1: now that we want to link to this route, give it a name: article_show :

src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 18

19

20

21

22

23

 // ... lines 24 - 33

34

35

href="https://en.wikipedia.org/wiki/Wernher_von_Braun">Wernher von Braun, 

Rocket Engineer</a></p>

                    <p class="pt-4"><i class="fa fa-comment"></i> "Let's 

face it, space is a risky business. I always considered every launch a 

barely controlled explosion." <br>— <a 

href="https://en.wikipedia.org/wiki/Aaron_Cohen_(Deputy_NASA_administrator)"

Cohen, NASA Administrator</a></p>

                    <p class="pt-4"><i class="fa fa-comment"></i> "If 

offered a seat on a rocket ship, don't ask what seat. Just get on."<br>— 

<a href="https://en.wikipedia.org/wiki/Christa_McAuliffe">Christa 

McAuliffe, Challenger Astronaut</a>

                </div>

            </div>

        </div>

    </div>

{% endblock %}

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}", name="article_show")

     */

    public function show($slug)

    {

    }

}



Step 2: inside homepage.html.twig , find the article... and... for the href , use

{{ path('article_show') }} :

templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 18

19

20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 56

57

 // ... lines 58 - 77

78

79

80

That should work... right? Refresh! No! It's a huge, horrible, error!

“Some mandatory parameters are missing - {slug}  - to generate a URL for

article_show .”

That totally makes sense! This route has a wildcard... so we can't just generate a URL to it.

Nope, we need to also tell Symfony what value it should use for the {slug}  part.

How? Add a second argument to path() : {} . That's the syntax for an associative array when

you're inside Twig - it's similar to JavaScript. Give this a slug  key set to

why-asteroids-taste-like-bacon :

{% block body %}

    <div class="container">

        <div class="row">

            <!-- Article List -->

            <div class="col-sm-12 col-md-8">

                <!-- Supporting Articles -->

                <div class="article-container my-1">

                    <a href="{{ path('article_show') }}">

                    </a>

                </div>

            </div>

        </div>

    </div>

{% endblock %}



templates/article/homepage.html.twig

 // ... lines 1 - 2

3

4

5

6

7

8

9

 // ... lines 10 - 18

19

20

21

22

 // ... lines 23 - 29

30

31

 // ... lines 32 - 56

57

 // ... lines 58 - 77

78

79

80

Try it - refresh! Error gone! And check this out: the link goes to our show page.

Next, let's add some JavaScript and an API endpoint to bring this little heart icon to life!

{% block body %}

    <div class="container">

        <div class="row">

            <!-- Article List -->

            <div class="col-sm-12 col-md-8">

                <!-- Supporting Articles -->

                <div class="article-container my-1">

                    <a href="{{ path('article_show', {slug: 'why-

asteroids-taste-like-bacon'}) }}">

                    </a>

                </div>

            </div>

        </div>

    </div>

{% endblock %}



Chapter 11: JavaScript & Page-Specific Assets

The topic of API's is... ah ... a huge topic and hugely important these days. We're going to dive

deep into API's in a future tutorial. But... I think we at least need to get to the basics right now.

So here's the goal: see this heart icon? I want the user to be able to click it to "like" the article.

We're going to write some JavaScript that sends an AJAX request to an API endpoint. That

endpoint will return the new number of likes, and we'll update the page. Well, the number of

"likes" is just a fake number for now, but we can still get this entire system setup and working.

Creating the new JavaScript File

Oh, and by the way, if you look at the bottom of base.html.twig , our page does have

jQuery, so we can use that:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 58

59

60

 // ... lines 61 - 65

66

67

68

In the public/  directory, create a new js/  directory and a file inside called, how about,

article_show.js . The idea is that we'll include this only on the article show page.

Start with a jQuery $(document).ready()  block:

<!doctype html>

<html lang="en">

    <body>

        {% block javascripts %}

            <script src="https://code.jquery.com/jquery-3.2.1.min.js" 

integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" 

crossorigin="anonymous"></script>

        {% endblock %}

    </body>

</html>



public/js/article_show.js

1

 // ... lines 2 - 9

10

Now, open show.html.twig  and, scroll down a little. Ah! Here is the hardcoded number and

heart link:

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... line 13

14

 // ... lines 15 - 18

19

20

21

22

 // ... lines 23 - 94

95

96

97

98

99

100

Yep, we'll start the AJAX request when this link is clicked and update the "5" with the new

number.

To set this up, let's make few changes. On the link, add a new class js-like-article . And

to target the 5, add a span around it with js-like-article-count :

$(document).ready(function() {

});

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <div class="show-article-title-container d-inline-

block pl-3 align-middle">

                            <span class="pl-2 article-details"> 5 <a 

href="#" class="fa fa-heart-o like-article"></a> </span>

                        </div>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}



templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... line 13

14

 // ... lines 15 - 18

19

20

21

22

23

24

25

 // ... lines 26 - 97

98

99

100

101

102

103

 // ... lines 104 - 107

We can use those to find the elements in JavaScript.

Copy the link's class. Let's write some very straightforward... but still awesome... JavaScript:

find that element and, on click, call this function. Start with the classic e.preventDefault()

so that the browser doesn't follow the link:

public/js/article_show.js

1

2

3

 // ... lines 4 - 8

9

10

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <div class="show-article-title-container d-inline-

block pl-3 align-middle">

                            <span class="pl-2 article-details">

                                <span class="js-like-article-

count">5</span>

                                <a href="#" class="fa fa-heart-o like-

article js-like-article"></a>

                            </span>

                        </div>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        e.preventDefault();

    });

});



Next, set a $link  variable to $(e.currentTarget) :

public/js/article_show.js

1

2

3

4

5

 // ... lines 6 - 8

9

10

This is the link that was just clicked. I want to toggle that heart icon between being empty and

full: do that with $link.toggleClass('fa-heart-o').toggleClass('fa-heart') :

public/js/article_show.js

1

2

3

4

5

6

 // ... lines 7 - 8

9

10

To update the count value, go copy the other class: js-like-article-count . Find it and

set its HTML, for now, to TEST :

public/js/article_show.js

1

2

3

4

5

6

7

8

9

10

Including Page-Specific JavaScript

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        e.preventDefault();

        var $link = $(e.currentTarget);

    });

});

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        e.preventDefault();

        var $link = $(e.currentTarget);

        $link.toggleClass('fa-heart-o').toggleClass('fa-heart');

    });

});

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        e.preventDefault();

        var $link = $(e.currentTarget);

        $link.toggleClass('fa-heart-o').toggleClass('fa-heart');

        $('.js-like-article-count').html('TEST');

    });

});



Simple enough! All we need to do now is include this JS file on our page. Of course, in

base.html.twig , we could add the script tag right at the bottom with the others:

templates/base.html.twig

1

2

 // ... lines 3 - 15

16

 // ... lines 17 - 58

59

60

61

62

63

64

65

66

67

68

But... we don't really want to include this JavaScript file on every page, we only need it on the

article show page.

But how can we do that? If we add it to the body  block, then on the final page, it will appear too

early - before even jQuery is included!

To add our new file at the bottom, we can override the javascripts  block. Anywhere in

show.html.twig , add {% block javascripts %}  and {% endblock %} :

templates/article/show.html.twig

 // ... lines 1 - 104

105

 // ... line 106

107

Add the script tag with src="" , start typing article_show , and auto-complete!

<!doctype html>

<html lang="en">

    <body>

        {% block javascripts %}

            <script src="https://code.jquery.com/jquery-3.2.1.min.js" 

integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" 

crossorigin="anonymous"></script>

            <script 

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.3/umd/popper.min.

integrity="sha384-

vFJXuSJphROIrBnz7yo7oB41mKfc8JzQZiCq4NCceLEaO4IHwicKwpJf9c9IpFgh" 

crossorigin="anonymous"></script>

            <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-

beta.2/js/bootstrap.min.js" integrity="sha384-

alpBpkh1PFOepccYVYDB4do5UnbKysX5WZXm3XxPqe5iKTfUKjNkCk9SaVuEZflJ" 

crossorigin="anonymous"></script>

            <script>

                $('.dropdown-toggle').dropdown();

            </script>

        {% endblock %}

    </body>

</html>

{% block javascripts %}

{% endblock %}



templates/article/show.html.twig

 // ... lines 1 - 104

105

106

107

There is still a problem with this... and you might already see it. Refresh the page. Click and... it

doesn't work!

Check out the console. Woh!

“$ is not defined”

That's not good! Check out the HTML source and scroll down towards the bottom. Yep, there is

literally only one script tag on the page. That makes sense! When you override a block, you

completely override that block! All the script tags from base.html.twig  are gone!

Whoops! What we really want to do is append to the block, not replace it. How can we do that?

Say {{ parent() }} :

templates/article/show.html.twig

 // ... lines 1 - 104

105

106

107

108

109

This will print the parent template's block content first, and then we add our stuff. This is why we

put CSS in a stylesheets  block and JavaScript in a javascripts  block.

Try it now! Refresh! And... it works! Next, let's create our API endpoint and hook this all together.

{% block javascripts %}

    <script src="{{ asset('js/article_show.js') }}"></script>

{% endblock %}

{% block javascripts %}

    {{ parent() }}

    <script src="{{ asset('js/article_show.js') }}"></script>

{% endblock %}



Chapter 12: JSON API Endpoint

When we click the heart icon, we need to send an AJAX request to the server that will,

eventually, update something in a database to show that the we liked this article. That API

endpoint also needs to return the new number of hearts to show on the page... ya know... in

case 10 other people liked it since we opened the page.

In ArticleController , make a new public function toggleArticleHeart() :

src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 39

40

41

 // ... lines 42 - 44

45

46

Then add the route above: @Route("/news/{slug}")  - to match the show URL - then

/heart . Give it a name immediately: article_toggle_heart :

src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 36

37

38

39

40

41

 // ... lines 42 - 44

45

46

I included the {slug}  wildcard in the route so that we know which article is being liked. We

could also use an {id}  wildcard once we have a database.

class ArticleController extends AbstractController

{

    public function toggleArticleHeart($slug)

    {

    }

}

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}/heart", name="article_toggle_heart")

     */

    public function toggleArticleHeart($slug)

    {

    }

}



Add the corresponding $slug  argument. But since we don't have a database yet, I'll add a

TODO: "actually heart/unheart the article!":

src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 36

37

38

39

40

41

42

 // ... lines 43 - 44

45

46

Returning JSON

We want this API endpoint to return JSON... and remember: the only rule for a Symfony

controller is that it must return a Symfony Response object. So we could literally say

return new Response(json_encode(['hearts' => 5])) .

But that's too much work! Instead say

return new JsonResponse(['hearts' => rand(5, 100)] :

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}/heart", name="article_toggle_heart")

     */

    public function toggleArticleHeart($slug)

    {

        // TODO - actually heart/unheart the article!

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 6

7

 // ... lines 8 - 9

10

11

 // ... lines 12 - 36

37

38

39

40

41

42

43

44

45

46

 Tip

Or use the controller shortcut!

return $this->json(['hearts' => rand(5, 100)]);

Note that since PHP 7.0 instead of rand()  you may want to use random_int()  that

generates cryptographically secure pseudo-random integers. It's more preferable to use

unless you hit performance issue, but with just several calls it's not even noticeable.

There's nothing special here: JsonResponse  is a sub-class of Response . It calls

json_encode()  for you, and also sets the Content-Type  header to application/json ,

which helps your JavaScript understand things.

Let's try this in the browser first. Go back and add /heart  to the URL. Yes! Our first API

endpoint!

 Tip

My JSON looks pretty thanks to the JSONView extension for Chrome!

Making the Route POST-Only

use Symfony\Component\HttpFoundation\JsonResponse;

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}/heart", name="article_toggle_heart")

     */

    public function toggleArticleHeart($slug)

    {

        // TODO - actually heart/unheart the article!

        return new JsonResponse(['hearts' => rand(5, 100)]);

    }

}

https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en


Eventually, this endpoint will modify something on the server - it will "like" the article. So as a

best-practice, we should not be able to make a GET request to it. Let's make this route only

match when a POST request is made. How? Add another option to the route:

methods={"POST"} :

src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 36

37

38

39

40

41

 // ... lines 42 - 44

45

46

As soon as we do that, we can no longer make a GET request in the browser: it does not match

the route anymore! Run:

./bin/console debug:router

And you'll see that the new route only responds to POST requests. Pretty cool. By the way,

Symfony has a lot more tools for creating API endpoints - this is just the beginning. In future

tutorials, we'll go further!

Hooking up the JavaScript & API

Our API endpoint is ready! Copy the route name and go back to article_show.js . But

wait... if we want to make an AJAX request to the new route... how can we generate the URL?

This is a pure JS file... so we can't use the Twig path()  function!

Actually, there is a really cool bundle called FOSJsRoutingBundle that does allow you to

generate routes in JavaScript. But, I'm going to show you another, simple way.

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}/heart", name="article_toggle_heart", methods=

{"POST"})

     */

    public function toggleArticleHeart($slug)

    {

    }

}

https://github.com/FriendsOfSymfony/FOSJsRoutingBundle


Back in the template, find the heart section. Let's just... fill in the href  on the link! Add

path() , paste the route name, and pass the slug  wildcard set to a slug  variable:

templates/article/show.html.twig

 // ... lines 1 - 4

5

6

7

8

9

10

11

12

 // ... line 13

14

 // ... lines 15 - 18

19

 // ... line 20

21

22

23

24

25

 // ... lines 26 - 97

98

99

100

101

102

103

 // ... lines 104 - 109

Actually... there is not a slug  variable in this template yet. If you look at

ArticleController , we're only passing two variables. Add a third: slug  set to $slug :

{% block body %}

<div class="container">

    <div class="row">

        <div class="col-sm-12">

            <div class="show-article-container p-3 mt-4">

                <div class="row">

                    <div class="col-sm-12">

                        <div class="show-article-title-container d-inline-

block pl-3 align-middle">

                            <span class="pl-2 article-details">

                                <a href="{{ path('article_toggle_heart', 

{slug: slug}) }}" class="fa fa-heart-o like-article js-like-article"></a>

                            </span>

                        </div>

                    </div>

                </div>

            </div>

        </div>

    </div>

</div>

{% endblock %}



src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 22

23

24

 // ... lines 25 - 30

31

 // ... line 32

33

 // ... line 34

35

36

 // ... lines 37 - 46

47

That should at least set the URL on the link. Go back to the show page in your browser and

refresh. Yep! The heart link is hooked up.

Why did we do this? Because now we can get that URL really easily in JavaScript. Add

$.ajax({})  and pass method: 'POST'  and url  set to $link.attr('href') :

public/js/article_show.js

1

2

 // ... lines 3 - 5

6

7

8

9

10

 // ... lines 11 - 12

13

14

15

That's it! At the end, add .done()  with a callback that has a data  argument:

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        return $this->render('article/show.html.twig', [

            'slug' => $slug,

        ]);

    }

}

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        $link.toggleClass('fa-heart-o').toggleClass('fa-heart');

        $.ajax({

            method: 'POST',

            url: $link.attr('href')

        })

    });

});



public/js/article_show.js

1

2

 // ... lines 3 - 7

8

9

10

11

 // ... line 12

13

14

15

The data  will be whatever our API endpoint sends back. That means that we can move the

article count HTML line into this, and set it to data.hearts :

public/js/article_show.js

1

2

 // ... lines 3 - 7

8

 // ... lines 9 - 10

11

12

13

14

15

Oh, and if you're not familiar with the .done()  function or Promises, I'd highly recommend

checking out our JavaScript Track. It's not beginner stuff: it's meant to take your JS up to the

next level.

Anyways... let's try it already! Refresh! And... click! It works!

And... I have a surprise! See this little arrow icon in the web debug toolbar? This showed up as

soon as we made the first AJAX request. Actually, every time we make an AJAX request, it's

added to the top of this list! That's awesome because - remember the profiler? - you can click to

view the profiler for any AJAX request. Yep, you now have all the performance and debugging

tools at your fingertips... even for AJAX calls.

Oh, and if there were an error, you would see it in all its beautiful, styled glory on the Exception

tab. Being able to load the profiler for an AJAX call is kind of an easter egg: not everyone knows

about it. But you should.

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        $.ajax({

            method: 'POST',

            url: $link.attr('href')

        }).done(function(data) {

        })

    });

});

$(document).ready(function() {

    $('.js-like-article').on('click', function(e) {

        $.ajax({

        }).done(function(data) {

            $('.js-like-article-count').html(data.hearts);

        })

    });

});

https://knpuniversity.com/tracks/javascript#modern-javascript


I think it's time to talk about the most important part of Symfony: Fabien. I mean, services.



Chapter 13: Services

It's time to talk about the most fundamental part of Symfony: services!

Honestly, Symfony is nothing more than a bunch of useful objects that work together. For

example, there's a router object that matches routes and generates URLs. There's a Twig object

that renders templates. And there's a Logger object that Symfony is already using internally to

store things in a var/log/dev.log  file.

Actually, everything in Symfony - I mean everything - is done by one of these useful objects.

And these useful objects have a special name: services.

What's a Service?

But don't get too excited about that word - service. It's a special word for a really simple idea: a

service is any object that does work, like generating URLs, sending emails or saving things to a

database.

Symfony comes with a huge number of services, and I want you to think of services as your

tools.

Like, if I gave you the logger service, or object, then you could use it to log messages. If I gave

you a mailer service, you could send some emails! Tools!

The entire second half of Symfony is all about learning where to find these services and how to

use them. Every time you learn about a new service, you get a new tool, and become just a little

bit more dangerous!

Using the Logger Service

Let's check out the logging system. Find your terminal and run:



tail -f var/log/dev.log

I'll clear the screen. Now, refresh the page, and move back. Awesome! This proves that

Symfony has some sort of logging system. And since everything is done by a service, there

must be a logger object. So here's the question: how can we get the logger service so that we

can log our own messages?

Here's the answer: inside the controller, on the method, add an additional argument. Give it a

LoggerInterface  type hint - hit tab to auto-complete that and call it whatever you want, how

about $logger :

src/Controller/ArticleController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 10

11

12

 // ... lines 13 - 41

42

43

 // ... lines 44 - 48

49

50

Remember: when you autocomplete, PhpStorm adds the use  statement to the top for you.

Now, we can use one of its methods: $logger->info('Article is being hearted') :

src/Controller/ArticleController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 41

42

43

44

45

46

 // ... lines 47 - 48

49

50

use Psr\Log\LoggerInterface;

class ArticleController extends AbstractController

{

    public function toggleArticleHeart($slug, LoggerInterface $logger)

    {

    }

}

class ArticleController extends AbstractController

{

    public function toggleArticleHeart($slug, LoggerInterface $logger)

    {

        // TODO - actually heart/unheart the article!

        $logger->info('Article is being hearted!');

    }

}



Before we talk about this, let's try it! Find your browser and click the heart. That hit the AJAX

endpoint. Go back to the terminal. Yes! There it is at the bottom. Hit Ctrl+C  to exit tail .

Service Autowiring

Ok cool! But... how the heck did that work? Here's the deal: before Symfony executes our

controller, it looks at each argument. For simple arguments like $slug , it passes us the

wildcard value from the router:

src/Controller/ArticleController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 38

39

40

41

42

43

 // ... lines 44 - 48

49

50

But for $logger , it looks at the type-hint and realizes that we want Symfony to pass us the

logger object. Oh, and the order of the arguments does not matter.

This is a very powerful idea called autowiring: if you need a service object, you just need to

know the correct type-hint to use! So... how the heck did I know to use LoggerInterface?

Well, of course, if you look at the official Symfony docs about the logger, it'll tell you. But, there's

a cooler way.

Go to your terminal and run:

./bin/console debug:autowiring

Boom! This is a full list of all of the type-hints that you can use to get a service. Notice that most

of them say that they are an alias to something. Don't worry about that too much: like routes,

each service has an internal name you can use to reference it. We'll learn more about that later.

class ArticleController extends AbstractController

{

    /**

     * @Route("/news/{slug}/heart", name="article_toggle_heart", methods=

{"POST"})

     */

    public function toggleArticleHeart($slug, LoggerInterface $logger)

    {

    }

}



Oh, and whenever you install a new package, you'll get more and more services in this list.

More tools!

Using Twig Directly

And check this out! If you want to get the Twig service, you can use either of these two type-

hints.

And remember how I said that everything in Symfony is done by a service? Well, when we call

$this->render()  in a controller, that's just a shortcut to fetch the Twig service and call a

method on it:

src/Controller/ArticleController.php

 // ... lines 1 - 10

11

12

 // ... lines 13 - 23

24

25

 // ... lines 26 - 31

32

 // ... lines 33 - 35

36

37

 // ... lines 38 - 49

50

In fact, let's pretend that the $this->render()  shortcut does not exist. How could we render

a template? No problem: we just need the Twig service. Add a second argument with an

Environment  type-hint, because that's the class name we saw in debug:autowiring . Call

the arg $twigEnvironment :

class ArticleController extends AbstractController

{

    public function show($slug)

    {

        return $this->render('article/show.html.twig', [

        ]);

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 24

25

26

 // ... lines 27 - 39

40

 // ... lines 41 - 52

53

Next, change the return  statement to be $html = $twigEnvironment->render() :

src/Controller/ArticleController.php

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 24

25

26

 // ... lines 27 - 32

33

34

35

36

37

 // ... lines 38 - 39

40

 // ... lines 41 - 52

53

The method we want to call on the Twig object is coincidentally the same as the controller

shortcut.

Then at the bottom, return new Response()  and pass $html :

use Twig\Environment;

class ArticleController extends AbstractController

{

    public function show($slug, Environment $twigEnvironment)

    {

    }

}

use Twig\Environment;

class ArticleController extends AbstractController

{

    public function show($slug, Environment $twigEnvironment)

    {

        $html = $twigEnvironment->render('article/show.html.twig', [

            'title' => ucwords(str_replace('-', ' ', $slug)),

            'slug' => $slug,

            'comments' => $comments,

        ]);

    }

}



src/Controller/ArticleController.php

 // ... lines 1 - 8

9

10

11

12

13

 // ... lines 14 - 24

25

26

 // ... lines 27 - 32

33

34

35

36

37

38

39

40

 // ... lines 41 - 52

53

Ok, this is way more work than before... and I would not do this in a real project. But, I wanted to

prove a point: when you use the $this->render()  shortcut method on the controller, all it

really does is call render()  on the Twig service and then wrap it inside a Response  object

for you.

Try it! Go back and refresh the page. It works exactly like before! Of course we will use shortcut

methods, because they make our life way more awesome. I'll change my code back to look like

it did before. But the point is this: everything is done by a service. If you learn to master

services, you can do anything from anywhere in Symfony.

There's a lot more to say about the topic of services, and so many other parts of Symfony:

configuration, Doctrine & the database, forms, Security and APIs, to just name a few. The

Space Bar is far from being the galactic information source that we know it will be!

But, congrats! You just spent an hour getting an awesome foundation in Symfony. You will not

regret your hard work: you're on your way to building great things and, as always, becoming a

better and better developer.

Alright guys, seeya next time!

use Symfony\Component\HttpFoundation\Response;

use Twig\Environment;

class ArticleController extends AbstractController

{

    public function show($slug, Environment $twigEnvironment)

    {

        $html = $twigEnvironment->render('article/show.html.twig', [

            'title' => ucwords(str_replace('-', ' ', $slug)),

            'slug' => $slug,

            'comments' => $comments,

        ]);

        return new Response($html);

    }

}



With <3 from SymfonyCasts


