
Charming Development in
Symfony 5

Chapter 1: Creating a new Symfony 5 Project

Hey friends! And welcome to the world of Symfony 5... which just happens to be my favorite

world! Ok, maybe Disney World is my favorite world... but programming in Symfony 5 is a close

second.

Symfony 5 is lean and mean: it's lightning fast, starts tiny, but grows with you as your app gets

bigger. And that's not marketing jargon! Your Symfony app will literally grow as you need more

features. But more on that later.

Symfony 5 is also the product of years of work on developer experience. Basically, the people

behind Symfony want you to love using it but without sacrificing quality. Yep, you get to write

code that you're proud of, love the process, and build things quickly.

Symfony is also the fastest major PHP framework, which is no surprise: - its creator also

created the PHP profiling system Blackfire. So... performance is always a focus.

 Go Deeper!

Watch our Blackfire.io: Revealing Performance Secrets with Profiling course to learn about

Blackfire.

Downloading the Symfony Installer

So... let's do this! Start off by going to http://symfony.com and clicking "Download". What we're

about to download is not actually Symfony. It's an executable tool that will help make local

development with Symfony... well.. awesome.

Because I'm on a Mac, I'll copy this command and then go open a terminal - I already have one

waiting. It doesn't matter where on your filesystem you run this. Paste!

curl -sS https://get.symfony.com/cli/installer | bash

https://symfonycasts.com/screencast/blackfire
http://symfony.com/

This downloads a single executable file and, for me, puts it into my home directory. To make it

so that I can run this executable from anywhere on my system, I'll follow the command's advice

and move the file somewhere else:

mv /Users/weaverryan/.symfony/bin/symfony /usr/local/bin/symfony

Ok, try it!

symfony

It's alive! Say hello to the Symfony CLI: a command-line tool that will help us with various things

along our path to programming glory.

Starting a new Symfony App

Its first job will be to help us create a new Symfony 5 project. Run:

symfony new cauldron_overflow

Where cauldron_overflow will be the directory that the new app will live in. This also

happens to be the name of the site we're building... but more on that later.

Behind the scenes, this command isn't doing anything special: it clones a Git repository called

symfony/skeleton and then uses Composer to install that project's dependencies. We'll talk

more about that repository and Composer a bit later.

When it's done, move into the new directory:

cd cauldron_overflow

And then open this directory in your favorite editor. I already have it open in my favorite:

PhpStorm, which I did by going to File -> Open Directory and selecting the new project folder.

Anyways, say hello to your brand new, shiny, full-of-potential new Symfony 5 project.

Our App is Small!

Before we start hacking away at things, let's create a new git repository and commit. But wait...

run:

git status

“On branch master, nothing to commit.”

Surprise! The symfony new command already initialized a git repository for us and made the

first commit. You can see it by running:

git log

“Add initial set of files”

Nice! Though, I personally would have liked a slightly more epic first commit message... but

that's fine.

I'll hit "q" to exit this mode.

I mentioned earlier that Symfony starts small. To prove it, we can see a list of all the files that

were committed by running:

git show --name-only

Yea... that's it! Our project - which is fully set up and ready to leverage Symfony - is less than 15

files... if you don't count things like .gitignore . Lean and mean.

Checking Requirements

Let's hook up a web server to our app and see it in action! First, make sure your computer has

everything Symfony needs by running:

symfony check:req

For check requirements. We're good - but if you have any issues and need help fixing them, let

us know in the comments.

Starting the PHP Web Server

To actually get the project running, look back in PhpStorm. We're going to talk more about each

directory soon. But the first thing you need to know is that the public/ directory is the

"document root". This means that you need to point your web server - like Apache or Nginx - at

this directory. Symfony has docs on how to do that.

But! To keep life simple, instead of setting up a real server on our local machine, we can use

PHP's built-in web server. At the root of your project, run:

php -S 127.0.0.1:8000 -t public/

As soon as we do that, we can spin back over to our browser and go to http://localhost:8000 to

find... Welcome to Symfony 5! Ooh, fancy!

Next: as easy as it was to run that PHP web server, I'm going to show you an even better option

for local development. Then we'll get to know the significance of the directories in our new app

and make sure that we have a few plugins installed in PhpStorm... which... make working with

Symfony an absolute pleasure.

http://localhost:8000/

Chapter 2: Meet our Tiny App + PhpStorm Setup

One of my main goals in these tutorials will be to help you really understand how Symfony - how

your application - works.

To start with that, let's take a quick look at the directory structure.

The public/ Directory

There are only three directories you need to think about. First, public/ is the document root:

so it will hold all files that need to be accessible by a browser. And... there's only one right now:

index.php :

public/index.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

This is called the "front controller": a fancy word that programmers invented to mean that this is

the file that's executed by your web server.

But, really, other than putting CSS or image files into public/ , you'll almost never need to

think about it.

src/ and config/

So... I kinda lied. There are truly only two directories that you need to think about: config/

and src/ . config/ holds... um... puppies? No, config/ holds config files and src/ is

where all your PHP code will go. It's just that simple.

use App\Kernel;

use Symfony\Component\ErrorHandler\Debug;

use Symfony\Component\HttpFoundation\Request;

require dirname(__DIR__).'/config/bootstrap.php';

if ($_SERVER['APP_DEBUG']) {

 umask(0000);

 Debug::enable();

}

if ($trustedProxies = $_SERVER['TRUSTED_PROXIES'] ??

$_ENV['TRUSTED_PROXIES'] ?? false) {

 Request::setTrustedProxies(explode(',', $trustedProxies),

Request::HEADER_X_FORWARDED_ALL ^ Request::HEADER_X_FORWARDED_HOST);

}

if ($trustedHosts = $_SERVER['TRUSTED_HOSTS'] ?? $_ENV['TRUSTED_HOSTS'] ??

false) {

 Request::setTrustedHosts([$trustedHosts]);

}

$kernel = new Kernel($_SERVER['APP_ENV'], (bool) $_SERVER['APP_DEBUG']);

$request = Request::createFromGlobals();

$response = $kernel->handle($request);

$response->send();

$kernel->terminate($request, $response);

Where is Symfony? Our project started with a composer.json :

composer.json

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 64

65

file, which lists all the third-party libraries that our app requires. Behind the scenes, that

symfony new command used composer to install these... which is a fancy way of saying that

Composer downloaded a bunch of libraries into the vendor/ directory... including Symfony

itself.

We'll talk more about the other files and directories along the way... but they're not important

yet.

Using the Symfony Local Web Server

A few minutes ago, we used PHP itself to start a local web server. Cool. But hit Ctrl+C to quit

that. Why? Because that handy symfony binary tool we installed comes with a more powerful

local server. Run:

symfony serve

That's it. The first time you run this, it may ask you about installing a certificate. That's optional.

If you do install it - I did - it will start the web server with https. Yep, you get https locally with

{

 "type": "project",

 "license": "proprietary",

 "require": {

 "php": "^7.2.5",

 "ext-ctype": "*",

 "ext-iconv": "*",

 "symfony/console": "5.0.*",

 "symfony/dotenv": "5.0.*",

 "symfony/flex": "^1.3.1",

 "symfony/framework-bundle": "5.0.*",

 "symfony/yaml": "5.0.*"

 },

 "require-dev": {

 },

}

zero config.

Once it's running, move over to your browser and refresh. It works! And the little lock icon

proves that we're now using https.

To stop the web server, just hit Control + C. You can see all of this command's options by

running:

symfony serve --help

Like ways to control the port number. When I use this command, I usually run:

symfony serve -d

The -d means to run as a daemon. It does the exact same thing except that now it runs in the

background... which means I can still use this terminal. Running:

symfony server:status

Shows me that the server is running and:

symfony server:stop

Will stop it. Let's start it again:

symfony serve -d

Installing PhpStorm Plugins

Ok: we're about to start doing a lot of coding... so I want to make sure your editor is ready to go.

And, yea, you can use whatever editor your want. But I highly recommend PhpStorm! Seriously,

it makes developing in Symfony a dream! And no, the nice people at PhpStorm aren't paying me

to say this... though... they do actually sponsor several open source PHP devs... which is kinda

better.

To really make PhpStorm awesome, you need to do two things. First, open the Preferences,

select "Plugins" and click "Marketplace". Search for "Symfony".

This plugin is amazing... proven by the nearly 4 million downloads. This will give us all kinds of

extra auto-completion & intelligence for Symfony. If you don't have it already, install it. You

should also install the "PHP Annotations" and "PHP toolbox" plugins. If you search for "php

toolbox"... you can see all three of them. Install them and restart PhpStorm.

Once you've restarted, go back to Preferences and Search for Symfony. In addition to installing

the plugin, you also need to enable it on a project-by-project basis. Check Enable and then

apply. It says you need to restart PhpStorm... but I don't think that's true.

The second thing you need to do in PhpStorm is to search for Composer and find the

"Languages and Frameworks", "PHP", "Composer" section. Make sure the "Synchronize IDE

settings with composer.json" box is checked... which automatically configures several useful

things.

Hit "Ok" and... we are ready! Let's create our very first page and see what Symfony is all about,

next.

Chapter 3: Route, Controllers & Responses!

The page we're looking at right now... which is super fun... and even changes colors... is just

here to say "Hello!". Symfony is rendering this because, in reality, our app doesn't have any real

pages yet. Let's change that.

Route + Controller = Page

Every web framework... in any language... has the same main job: to give you a route &

controller system: a 2-step system to build pages. A route defines the URL of the page and the

controller is where we write PHP code to build that page, like the HTML or JSON.

Open up config/routes.yaml :

config/routes.yaml

1

2

3

Hey! We already have an example! Uncomment that. If you're not familiar with YAML, it's super

friendly: it's a key-value config format that's separated by colons. Indentation is also important.

This creates a single route whose URL is / . The controller points to a function that will build this

page... really, it points to a method on a class. Overall, this route says:

“when the user goes to the homepage, please execute the index method on the

DefaultController class.”

Oh, and you can ignore that index key at the top of the YAML: that's an internal name for the

route... and it's not important yet.

Our App

#index:

path: /

controller: App\Controller\DefaultController::index

The project we're building is called "Cauldron Overflow". We originally wanted to create a site

where developers could ask questions and other developers answered them but... someone

beat us to it... by... like 10 years. So like all impressive startups, we're pivoting! We've noticed a

lot of wizards accidentally blowing themselves up... or conjuring fire-breathing dragons when

they meant to create a small fire for roasting marshmallows. And so... Cauldron Overflow is here

to become the place for witches and wizards to ask and answer questions about magical

misadventures.

Creating a Controller

On the homepage, we will eventually list some of the most recent questions. So let's change the

controller class to QuestionController and the method to homepage .

config/routes.yaml

1

2

3

Ok, route done: it defines the URL and points to the controller that will build the page. Now... we

need to create that controller! Inside the src/ directory, there's already a Controller/

directory... but it's empty. I'll right click on this and select "New PHP class". Call it

QuestionController .

Namespaces & the src/ Directory

Ooh, check this out. It pre-filled the namespace! That's awesome! This is thanks to the

Composer PhpStorm configuration we did in the last chapter.

Here's the deal: every class we create in the src/ directory will need a namespace. And... for

reasons that aren't super important, the namespace must be App\ followed whatever directory

the file lives in. Because we're creating this file in the Controller/ directory, its namespace

must be App\Controller . PhpStorm will pre-fill this every time.

index:

 path: /

 controller: App\Controller\QuestionController::homepage

src/Controller/QuestionController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

 // ... lines 9 - 12

13

Perfect! Now, because in routes.yaml we decided to call the method homepage , create that

here: public function homepage() .

src/Controller/QuestionController.php

 // ... lines 1 - 2

3

 // ... lines 4 - 6

7

8

9

10

 // ... line 11

12

13

Controllers Return a Response

And.. congratulations! You are inside of a controller function, which is also sometimes called an

"action"... to confuse things. Our job here is simple: to build the page. We can write any code we

need to do that - like to make database queries, cache things, perform API calls, mine

cryptocurrencies... whatever. The only rule is that a controller function must return a Symfony

Response object.

Say return new Response() . PhpStorm tries to auto-complete this... but there are multiple

Response classes in our app. The one we want is from

Symfony\Component\HttpFoundation . HttpFoundation is one of the most important parts

- or "components" - in Symfony. Hit tab to auto-complete it.

But stop! Did you see that? Because we let PhpStorm auto-complete that class for us, it wrote

Response , but it also added the use statement for this class at the top of the file! That is one

of the best features of PhpStorm and I'm going to use it a lot. You will constantly see me type a

namespace App\Controller;

class QuestionController

{

}

namespace App\Controller;

class QuestionController

{

 public function homepage()

 {

 }

}

class and allow PhpStorm to auto-complete it so that it adds the use statement to the top of the

file for me.

Inside new Response() , add some text:

“What a bewitching controller we have conjured!”

src/Controller/QuestionController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

12

13

And... done! We just created our first page! Let's try it! When we go to the homepage, it should

execute our controller function... which returns the message.

Find your browser. We're already on the homepage... so just refresh. Say hello to our very first

page. I know, it's not much to look at yet, but we've already covered the most foundational part

of Symfony: the route and controller system.

Next, let's make our route fancier by using something called annotations. We'll also create a

second page with a route that matches a wildcard path.

namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

class QuestionController

{

 public function homepage()

 {

 return new Response('What a bewitching controller we have

conjured!');

 }

}

Chapter 4: Annotation & Wildcard Routes

Creating a route in YAML that points to a controller function is pretty simple. But there's an even

easier way to create routes... and I love it. It's called: annotations.

First, comment-out the YAML route. Basically, remove it entirely. To prove it's not working,

refresh the homepage. Yep! It's back to the welcome page.

config/routes.yaml

1

2

3

Installing Annotations Support

Annotations are a special config format... and support for annotations is not something that

comes standard in our tiny Symfony app. And... that's fine! In fact, that's the whole philosophy of

Symfony: start small and add features when you need them.

To add annotations support, we'll use Composer to require a new package. If you don't have

Composer installed already, go to https://getcomposer.org.

Once you do, run:

composer require "annotations:<6.2.10"

If you're familiar with composer, that package name might look strange. And in reality, it installed

a totally different package: sensio/framework-extra-bundle . Near the bottom of the

command, it mentions something about two recipes. We'll talk about what's going on soon: it's

part of what makes Symfony special.

Adding a Route Annotation

#index:

path: /

controller: App\Controller\QuestionController::homepage

https://getcomposer.org/

Anyways, now that annotations support is installed, we can re-add our route via annotations.

What does that mean? Above your controller function, say /** and hit enter to create a

PHPDoc section. Then say @Route and auto-complete the one from the Routing component.

Just like before, PhpStorm added the use statement at the top of the class automatically.

Inside the parentheses, say "/" .

src/Controller/QuestionController.php

 // ... lines 1 - 5

6

7

8

9

10

11

12

13

14

 // ... line 15

16

17

That's it! When the user goes to the homepage, it will execute the function right below this. I

love annotations because they're simple to read and keep the route and controller right next to

each other. And yes... annotations are literally configuration inside PHP comments. If you don't

like them, you can always use YAML or XML instead: Symfony is super flexible. From a

performance standpoint, all the formats are the same.

Now when we refresh the homepage... we're back!

A Second Route and Controller

This page will eventually list some recently-asked questions. When you click on a specific

question, it will need its own page. Let's create a second route and controller for that. How? By

creating a second method. How about: public function show() .

use Symfony\Component\Routing\Annotation\Route;

class QuestionController

{

 /**

 * @Route("/")

 */

 public function homepage()

 {

 }

}

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 20

21

22

 // ... line 23

24

25

Above this, add @Route() and set the URL to, how about,

/questions/how-to-tie-my-shoes-with-magic . That would be awesome!

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

 // ... line 23

24

25

Inside, just like last time, return a new Response : the one from HttpFoundation .

“Future page to show a question”

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

23

24

25

class QuestionController

{

 public function show()

 {

 }

}

class QuestionController

{

 /**

 * @Route("/questions/how-to-tie-my-shoes-with-magic")

 */

 public function show()

 {

 }

}

class QuestionController

{

 /**

 * @Route("/questions/how-to-tie-my-shoes-with-magic")

 */

 public function show()

 {

 return new Response('Future page to show a question!');

 }

}

Let's try it! Copy the URL, move over to your browser, paste and... it works! We just created a

second page... in less than a minute.

The Front Controller: Working Behind-the-Scenes

By the way, no matter what URL we go to - like this one or the homepage - the PHP file that our

web server is executing is index.php . It's as if we are going to

/index.php/questions/how-to-tie-my-shoes-with-magic . The only reason you

don't need to have index.php in the URL is because our local web server is configured to

execute index.php automatically. On production, your Nginx or Apache config will do the

same. Check the Symfony docs to learn how.

A Wildcard Route

Eventually, we're going to have a database full of questions. And so, no, we are not going to

manually create one route per question. Instead, we can make this route smarter. Replace the

how-to-tie-my-shoes-with-magic part with {slug} .

When you have something between curly braces in a route, it becomes a wildcard. This route

now matches /questions/ANYTHING . The name {slug} is not important: we could have

used anything... like {slugulusErecto} ! That makes no difference.

But whatever we call this wildcard - like {slug} - we are now allowed to have an argument to

our controller with the same name: $slug ... which will be set to whatever that part of the URL

is.

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

 // ... lines 23 - 26

27

28

class QuestionController

{

 /**

 * @Route("/questions/{slug}")

 */

 public function show($slug)

 {

 }

}

Let's use that to make our page fancier! Let's use sprintf() , say "the" question and add a

%s placeholder. Pass $slug for that placeholder.

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 17

18

19

20

21

22

23

24

25

26

27

28

Sweet! Move over, refresh and... love it! Change the URL to

/questions/accidentally-turned-cat-into-furry-shoes and... that works too.

In the future, we'll use the $slug to query the database for the question. But since we're not

there yet, I'll use str_replace() ... and ucwords() to make this just a little more elegant.

It's still early, but the page is starting come alive!

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

9

 // ... lines 10 - 20

21

22

23

 // ... line 24

25

26

27

28

Next, our new app is hiding a secret! A little command-line executable that's filled with goodies.

class QuestionController

{

 /**

 * @Route("/questions/{slug}")

 */

 public function show($slug)

 {

 return new Response(sprintf(

 'Future page to show the question "%s"!',

 $slug

));

 }

}

class QuestionController

{

 public function show($slug)

 {

 return new Response(sprintf(

 ucwords(str_replace('-', ' ', $slug))

));

 }

}

Chapter 5: The Lovely bin/console Tool

Let's commit our progress so far. I'll clear the screen and run:

git status

Interesting: there are a few new files here that I didn't create. Don't worry: we're going to talk

about that exactly in the next chapter. Add everything with:

git add .

Normally... this command can be dangerous - we might accidentally add some files that we

don't want to commit! Fortunately, our project came with a pre-filled .gitignore file which

ignores the important stuff, like vendor/ and some other paths we'll talk about later. For

example, var/ holds cache and log files. The point is, Symfony has our back.

Commit with:

git commit -m "we are ROCKING this Symfony thing"

Hello bin/console Command

You can interact with your Symfony app in two different ways. The first is by loading a page in

your browser. The second is with a handy command-line script called bin/console . At your

terminal, run:

php bin/console

Woh! This command lists a bunch of different things you can do with it, including a lot of

debugging tools. Now, just to demystify this a little, there is literally a bin/ directory in our app

with a file called console inside. So this bin/console thing is not some global command

that got installed on our system: we are literally executing a physical PHP file.

The bin/console command can do many things - and we'll discover my favorite features

along the way. For example, want to see a list of every route in your app? Run:

php bin/console debug:router

Yep! There are our two routes... plus another one that Symfony adds automatically during

development.

The bin/console tool already contains many useful commands like this. But the list of

commands it supports is not static. New commands can be added by us... or by new packages

that we install into our project. That's my "not-so-subtle" foreshadowing.

Next: let's talk about Symfony Flex, Composer aliases and the recipes system. Basically, the

tools that makes Symfony truly unique.

Chapter 6: Flex, Recipes & Aliases

We're going to install a totally new package into our app called the "security checker". The

security checker is a tool that looks at your application's dependencies and tell you if any of

them have known security vulnerabilities. But, full disclosure, as cool as that is... the real reason

I want to install this library is because it's a great way to look at Symfony's all-important "recipe"

system.

At your terminal, run:

composer require sec-checker --no-scripts

 Tip

You can still download the security checker to see how its recipe works, but the API it uses

has been discontinued in favor of other solutions. If you want to know more, see

https://github.com/sensiolabs/security-checker

In a real app, you should probably pass --dev to add this to your dev dependencies... but it

won't matter for us.

Flex Aliases

There is, however, something weird here. Specifically... sec-checker is not a valid package

name! In the Composer world, every package must be something/something-else : it can't

just be sec-checker . So what the heck is going on?

Back in PhpStorm, open up composer.json . When we started the project, we had just a few

dependencies in this file. One of them is symfony/flex .

https://github.com/sensiolabs/security-checker

composer.json

1

 // ... lines 2 - 3

4

5

6

7

8

9

10

11

12

13

14

15

 // ... lines 16 - 67

68

This is a composer plugin that adds two special features to Composer itself. The first is called

"aliases".

At your browser, go to http://flex.symfony.com to find and big page full of packages.

 Tip

The flex.symfony.com server was shut down in favor of a new system. But you can still see

a list of all of the available recipes at https://bit.ly/flex-recipes!

Search for security . Better, search for sec-checker . Boom! This says that there is a

package called sensiolabs/security-checker and it has aliases of sec-check ,

sec-checker , security-checker and some more.

The alias system is simple: because Symfony Flex is in our app, we can say

composer require security-checker , and it will really download

sensiolabs/security-checker .

You can see this in our terminal: we said sec-checker , but ultimately it downloaded

sensiolabs/security-checker . That's also what Composer added to our

composer.json file. So... aliases are just a nice shortcut feature... but it's kinda cool! You can

almost guess an alias when you want to install something. Want a logger? Run

composer require logger to get the recommended logger. Need to mail something?

composer require mailer . Need to eat a cake? composer require cake !

{

 "require": {

 "php": "^7.2.5",

 "ext-ctype": "*",

 "ext-iconv": "*",

 "sensio/framework-extra-bundle": "^5.5",

 "sensiolabs/security-checker": "^6.0",

 "symfony/console": "5.0.*",

 "symfony/dotenv": "5.0.*",

 "symfony/flex": "^1.3.1",

 "symfony/framework-bundle": "5.0.*",

 "symfony/yaml": "5.0.*"

 },

}

http://flex.symfony.com/
https://bit.ly/flex-recipes

Flex Recipes

The second feature that Flex adds to Composer is the really important one. It's the recipe

system.

Back at the terminal, after installing the package, it said:

“Symfony operations: 1 recipe configuring sensiolabs/security-checker.”

Interesting. Run:

git status

Whoa! We expected composer.json and composer.lock to be modified... that's how

composer works. But something also modified a symfony.lock file... and added a totally new

security_checker.yaml file!

Ok, first, symfony.lock is a file that's managed by Flex. You don't need to worry about it, but

you should commit it. It keeps a big list of which recipes have been installed.

So, who created the other file? Open it up: config/packages/security_checker.yaml .

config/packages/security_checker.yaml

1

2

3

4

5

6

7

8

Each package you install may have a Flex "recipe". The idea is beautifully simple. Instead of

telling people to install a package and then create this file, and update this other file in order to

get things working, Flex executes a recipe which... just does that stuff for you! This file was

added by the sensiolabs/security-checker recipe!

You don't need to worry about the specifics of what's inside this file right now. The point is,

thanks to this file, we have a new bin/console command. Run:

services:

 _defaults:

 autowire: true

 autoconfigure: true

 SensioLabs\Security\SecurityChecker: null

 SensioLabs\Security\Command\SecurityCheckerCommand: null

php bin/console

See that security:check command? That wasn't there a second ago. It's there now thanks

to the new YAML file. Try it:

php bin/console security:check

No packages have known vulnerabilities! Awesome!

How Recipes Work

Here is the big picture: thanks to the recipe system, whenever you install a package, Flex will

check to see if that package has a recipe and, if it does, will install it. A recipe can do many

things, like add files, create directories or even modify a few files, like adding new lines to your

.gitignore file.

The recipe system is a game-changer. I love it because anytime I need a new package, all I

need to do is install it. I don't need to add configuration files or modify anything because the

recipe automates all that boring work.

Recipes can Modify Files

In fact, this recipe did something else we didn't notice. At the terminal, run:

git diff composer.json

We expected that Composer would add this new line to the require section. But there is also

a new line under the scripts section. That was done by the recipe.

composer.json

1

 // ... lines 2 - 3

4

 // ... lines 5 - 8

9

 // ... lines 10 - 14

15

 // ... lines 16 - 45

46

47

 // ... lines 48 - 49

50

51

 // ... lines 52 - 57

58

 // ... lines 59 - 67

68

Thanks to this, whenever you run composer install after it finishes, it automatically runs

the security checker.

 Tip

Running composer install will fail with 403 API error. It's ok, we will remove security

checker in the next chapter so it won't be an issue. If you want to know more, see

https://github.com/sensiolabs/security-checker

The point is: to use the security checker, the only thing we needed to do was... install it. Its

recipe took care of the rest of the setup.

Now... if you're wondering:

“Hey! Where the heck does this recipe live? Can I see it?”

That's a great question! Let's find out where these recipes live and what they look like next.

{

 "require": {

 "sensiolabs/security-checker": "^6.0",

 },

 "scripts": {

 "auto-scripts": {

 "security-checker security:check": "script"

 },

 },

}

https://github.com/sensiolabs/security-checker

Chapter 7: How Recipes Work

Where do these Flex recipes lives? They live... in the cloud. More specifically, if you look back at

https://flex.symfony.com, you can click to view the Recipe for any of the packages.

 Tip

The flex.symfony.com server was shut down in favor of a new system. But you can still see

a list of all of the available recipes at https://bit.ly/flex-recipes!

This goes to... interesting: a GitHub repository called symfony/recipes .

Go to the homepage of this repository. This is the central repository for recipes, organized by

the name of the package... and then each package can have different recipes for different

versions. Our recipe lives in sensiolabs/security-checker/4.0 .

Looking at the Source of a Recipe

Every recipe has at least this manifest.json file, which describes all of the "things" it should

do. This copy-from-recipe says that the contents of the config/ directory in the recipe

should be copied into our project. This is why a

config/packages/security_checker.yaml file was added to our app.

Back in the manifest, the composer-scripts section tells Flex to add this line to our

composer.json file... and aliases define... well... the aliases that should map to this

package.

There are a few other things that a recipe can do, but this is the basic idea.

So... all Symfony recipes live in this one repository. Hmm, actually, that's not true: all Symfony

recipes lives in this repository or in another one called recipes-contrib . There's no

difference between these, except that quality control is higher on recipes merged into the main

repository.

https://flex.symfony.com/
https://bit.ly/flex-recipes

Using Composer to View Recipes

Another way you can see details about the recipes is via Composer itself. Run:

composer recipes

These are the 7 recipes that have been installed into our app. And if we run:

composer recipes sensiolabs/security-checker

We can see more details, like the URL to the recipe and files it copied into our app.

Anyways, the recipe system is going to be our best friend: allowing our app to start tiny, but

grow automatically when we install new packages.

Removing a Package & Recipe

Oh, and if you decide that you want to remove a package, its recipe will be uninstalled. Check it

out:

composer remove sec-checker

That - of course - will remove the package... but it also "unconfigured" the recipe. When we run:

git status

It's clean! It reverted the change in composer.json and removed the config file.

composer.json

1

 // ... lines 2 - 3

4

5

6

7

8

9

10

11

12

13

14

 // ... lines 15 - 44

45

46

47

48

49

 // ... lines 50 - 55

56

 // ... lines 57 - 65

66

Next: let's install Twig - Symfony's templating engine - so we can create HTML templates. The

Twig recipe is going to make this so easy.

{

 "require": {

 "php": "^7.2.5",

 "ext-ctype": "*",

 "ext-iconv": "*",

 "sensio/framework-extra-bundle": "^5.5",

 "symfony/console": "5.0.*",

 "symfony/dotenv": "5.0.*",

 "symfony/flex": "^1.3.1",

 "symfony/framework-bundle": "5.0.*",

 "symfony/yaml": "5.0.*"

 },

 "scripts": {

 "auto-scripts": {

 "cache:clear": "symfony-cmd",

 "assets:install %PUBLIC_DIR%": "symfony-cmd"

 },

 },

}

Chapter 8: The Twig Recipe

Unless you're building a pure API - and we will talk about returning JSON later in this tutorial -

you're going to need to write some HTML. And... putting text or HTML in a controller like this is...

ugly.

No worries! Symfony has great integration with an incredible template library called Twig.

There's just one problem: our Symfony app is so small that Twig isn't even installed yet! Ah, but

that's not really a problem... thanks to the recipe system.

Installing Twig

Head back to https://flex.symfony.com and search for "template". There it is! Apparently

Symfony's recommended "template" library is something called twig-pack . Let's install it!

composer require template

This installs a few packages... and yea! 2 recipes! Let's see what they did:

git status

Checking out the Recipe Changes

Whoa, awesome. Okay: we expected changes to composer.json , composer.lock and

symfony.lock . Everything else was done by those recipes.

What are Bundles?

Let's look at bundles.php first:

https://flex.symfony.com/

git diff config/bundles.php

Interesting: it added two lines. Go open that: config/bundles.php .

config/bundles.php

 // ... lines 1 - 2

3

4

5

6

7

8

A "bundle" is a Symfony plugin. Pretty commonly, when you want to add a new feature to your

app, you'll install a bundle. And when you install a bundle, you need to enable it in your

application. A long time ago, doing this was manual. But thanks to Symfony Flex, whenever you

install a Symfony bundle, it automatically updates this to enable it for you. So... now that we've

talked about this file, you'll probably never need to think about it again.

The templates/ Directory and Config

The recipe also added a templates/ directory. So if you were wondering where your

templates are supposed to live... the recipe kinda answered that question! It also added a

base.html.twig layout file that we'll talk about soon.

templates/base.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

return [

 Symfony\Bundle\FrameworkBundle\FrameworkBundle::class => ['all' =>

true],

 Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle::class

=> ['all' => true],

 Symfony\Bundle\TwigBundle\TwigBundle::class => ['all' => true],

 Twig\Extra\TwigExtraBundle\TwigExtraBundle::class => ['all' => true],

];

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>{% block title %}Welcome!{% endblock %}</title>

 {% block stylesheets %}{% endblock %}

 </head>

 <body>

 {% block body %}{% endblock %}

 {% block javascripts %}{% endblock %}

 </body>

</html>

So... apparently our templates are supposed to live in templates/ . But why? I mean, is that

path hardcoded deep in some core Twig file? Nope! It lives right in our code, thanks to a

twig.yaml file that was created by the recipe. Let's check that out:

config/packages/twig.yaml .

config/packages/twig.yaml

1

2

We're going to talk more about these YAML files in another tutorial. But without understanding a

lot about this file, it... already makes sense! This default_path config points to the

templates/ directory. Want your templates to live somewhere else? Just change this and...

done! You're in control.

By the way, don't worry about this weird %kernel.project_dir% syntax. We'll learn about

that later. But basically, it's a fancy way to point to the root of our project.

The recipe also created one other twig.yaml file which is less important:

config/packages/test/twig.yaml . This makes a tiny change to Twig inside your

automated tests. The details don't really matter. The point is: we installed Twig and its recipe

handled everything else. We are 100% ready to use it in our app. Let's do that next.

twig:

 default_path: '%kernel.project_dir%/templates'

Chapter 9: Twig ❤️

Let's make our show() controller render some real HTML by using a template. As soon as you

want to render a template, you need to make your controller extend AbstractController .

Don't forget to let PhpStorm auto-complete this so it adds the use statement.

Now, obviously, a controller doesn't need to extend this base class - Symfony doesn't really care

about that. But, you usually will extend AbstractController for one simple reason: it gives

us shortcut methods!

src/Controller/QuestionController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

10

 // ... lines 11 - 27

28

Rendering a Template

The first useful shortcut method is render . We can say: return this->render() and

pass two arguments. The first is the filename of the template: we can put anything here, but

usually - because we value our sanity - we name this after our controller:

question/show.html.twig .

The second argument is an array of any variables that we want to pass into the template.

Eventually, we're going to query the database for a specific question and pass that data into the

template. Right now, let's fake it. I'll copy my ucwords() line and delete the old code. Let's

pass a variable into the template called - how about, question - set to this string.

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class QuestionController extends AbstractController

{

}

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

25

26

27

28

Pop quiz time! What do you think that render() method returns? A string? Something else?

The answer is: a Response object... with HTML inside. Because remember: the one rule of a

controller is that it must always return a Response .

 Tip

A controller can actually return something other than a Response, but don't worry about that

right now... or maybe ever.

Creating the Template

Anyways, let's go create that template! Inside templates/ , create a question sub-directory,

then a new file called show.html.twig . Let's start simple: an <h1> and then

{{ question }} to render the question variable. And... I'll put some extra markup below this.

templates/question/show.html.twig

1

2

3

4

5

6

The 3 Syntaxes of Twig!

We just wrote our first Twig code! Twig is super friendly: it's a plain HTML file until your write one

of its two syntaxes.

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 return $this->render('question/show.html.twig', [

 'question' => ucwords(str_replace('-', ' ', $slug))

]);

 }

}

<h1>{{ question }}</h1>

<div>

 Eventually, we'll print the full question here!

</div>

The first is the "say something" syntax. Anytime you want to print something, use {{ , the thing

you want to print, then }} . Inside the curly braces, you're writing Twig code... which is a lot like

JavaScript. This prints the question variable. If we put quotes around it, it would print the

string question . And yea, you can do more complex stuff - like the ternary operator. Again, it's

very much like JavaScript.

The second syntax I call the "do something" syntax. It's {% followed by whatever you need to

do, like if or for to do a loop. We'll talk more about this in a second.

And... that's it! You're either printing something with {{ or doing something, like an if

statement, with {% .

Ok, small lie, there is a third syntax... but it's just comments: {# , a comment... then #} .

templates/question/show.html.twig

1

2

3

4

5

6

7

8

Let's see if this works! Move over refresh and... got it! If you view the HTML source, notice that

there is no HTML layout yet. It's literally the markup from our template and nothing else. We'll

add a layout in a few minutes.

Looping with the {% for Tag

Ok: we have a fake question. I think it deserves some fake answers! Back in the controller, up in

the show() action, I'm going to paste in three fake answers.

<h1>{{ question }}</h1>

{# oh, I'm just a comment hiding here #}

<div>

 Eventually, we'll print the full question here!

</div>

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

25

26

27

28

 // ... lines 29 - 33

34

35

Again, once we talked about databases, we will query the database for these. But this will work

beautifully to start. Pass these into the template as a second variable called answers .

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Back in the template, how can we print those? We can't just say {{ answers }} ... because

it's an array. What we really want to do is loop over that array and print each individual answer.

To do that, we get to use our first "do something" tag! It looks like this:

{% for answer in answers %} . And most "do something" tags also have an end tag:

{% endfor %} .

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 $answers = [

 'Make sure your cat is sitting purrrfectly still ?',

 'Honestly, I like furry shoes better than MY cat',

 'Maybe... try saying the spell backwards?',

];

 }

}

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 $answers = [

 'Make sure your cat is sitting purrrfectly still ?',

 'Honestly, I like furry shoes better than MY cat',

 'Maybe... try saying the spell backwards?',

];

 return $this->render('question/show.html.twig', [

 'question' => ucwords(str_replace('-', ' ', $slug)),

 'answers' => $answers,

]);

 }

}

Let's surround this with a ul and, inside the loop, say and {{ answer }} .

templates/question/show.html.twig

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 17

I love that! Ok browser, reload! It works! I mean, it's so, so, ugly... but we'll fix that soon.

The Twig Reference: Tags, Filters, Functions

Head to https://twig.symfony.com. Twig is its own library with its own documentation. There's a

lot of good stuff here... but what I really love is down here: the Twig Reference.

See these "Tags" on the left? These are all of the "do something" tags that exist. Yep, it will

always be {% and then one of these words - like for , if or {% set . If you try {% pizza , I'll

think it's funny, but Twig will yell at you.

Twig also has functions... like every language... and a cool feature called "tests", which is a bit

unique. These allow you to say things like: if foo is defined or if number is even .

But the biggest and coolest section is for "filters". Filters are basically functions... but more

hipster. Check out the length filter. Filters work like "pipes" on the command line: we "pipe"

the users variable into the length filter, which counts it. The value goes from left to right.

Filters are really functions... with a friendlier syntax.

Let's use this filter to print out the number of answers. I'll add some parenthesis, then

{{ answers|length }} . When we try that... super nice!

templates/question/show.html.twig

 // ... lines 1 - 7

8

9

10

 // ... lines 11 - 17

<h2>Answers</h2>

 {% for answer in answers %}

 {{ answer }}

 {% endfor %}

<h2>Answers {{ answers|length }}</h2>

https://twig.symfony.com/
https://twig.symfony.com/doc/3.x/#reference

Twig Template Inheritance: extends

At this point, you're well on your way to being a Twig pro. There's just one last big feature we

need to talk about, and it's a good one: template inheritance.

Most of our pages will share an HTML layout. Right now, we don't have any HTML structure. To

give it some, at the top of the template, add {% extends 'base.html.twig' %} .

templates/question/show.html.twig

1

2

3

 // ... lines 4 - 19

This tells Twig that we want to use this base.html.twig template as our layout. This file is

super basic right now, but it's ours to customize - and we will soon.

But if you refresh the page... hide! Huge error!

“A template that extends another one cannot include content outside Twig blocks.”

When you add extends to a template, you're saying that you want the content from this

template to go inside of base.html.twig . But... where? Should Twig put it all the way on top?

On the bottom? Somewhere in the middle? Twig doesn't know!

I'm sure you already noticed these block things, like stylesheets , title and body .

Blocks are "holes" that a child template can put content into. We can't just extend

base.html.twig : we need to tell it which block the content should go into. The body block is

a perfect spot.

How do we do this? By overriding the block. Above the content add {% block body %} , and

after, {% endblock %} .

templates/question/show.html.twig

1

2

3

 // ... lines 4 - 18

19

 // ... lines 20 - 21

{% extends 'base.html.twig' %}

<h1>{{ question }}</h1>

{% extends 'base.html.twig' %}

{% block body %}

{% endblock %}

Try it now. It works! It doesn't look like much yet... because our base layout is so simple, but if

you check out the page source, we do have the basic HTML structure.

Adding, Removing, Changing Blocks?

By the way, these blocks in base.html.twig aren't special: you can rename them, move

them around, add more or remove some. The more blocks you add, the more flexibility your

"child" templates have to put content into different spots.

Most of the existing blocks are empty... but a block can define default content... like the title

block. See this Welcome? No surprise, that's the current title of the page.

Because this is surrounded by a block, we can override that in any template. Check it out:

anywhere in show.html.twig , add {% block title %} , Question, print the question,

then {% endblock %} .

templates/question/show.html.twig

1

2

3

4

5

 // ... lines 6 - 20

21

 // ... lines 22 - 23

This time when we reload... we have a new title!

Ok, with Twig behind us, let's look at one of the killer features of Symfony... and your new best

friend for debugging: the Symfony profiler.

{% extends 'base.html.twig' %}

{% block title %}Question: {{ question }}{% endblock %}

{% block body %}

{% endblock %}

Chapter 10: Profiler: Your Debugging Best Friend

We're making some pretty serious progress - you should be proud! Let's check out what files

we've modified:

git status

Add everything:

git add .

And commit:

git commit -m "Added some Twiggy goodness"

Installing the Profiler

Because now I want to install one of my absolute favorite tools in Symfony. Run:

composer require profiler --dev

I'm using --dev because the profiler is a tool that we'll only need while we're developing: it

won't be used on production. This means Composer adds it to the require-dev section of

composer.json . This isn't that important, but this is the right way to do it.

 Tip

In newer projects, instead of symfony/profiler-pack , you may see 3 packages here,

including symfony/web-profiler-bundle . That's ok! We'll explain what's going on in a

few minutes.

composer.json

1

 // ... lines 2 - 15

16

17

18

 // ... lines 19 - 67

68

And... at this point, it should be no surprise that this configured a recipe! Run:

git status

Hello Web Debug Toolbar

Oh, wow! It added three config files. Thanks to these, the feature will work instantly. Try it: back

at your browser, refresh the page. Hello web debug toolbar! The fancy little black bar on the

bottom. This will now show up on every HTML page while we're developing. It tells us the status

code, which controller and route were used, speed, memory, Twig calls and even more icons

will show up as we start using more parts of Symfony.

And Hello Profiler

The best part is that you can click any of these icons to jump into... the profiler. This is basically

the expanded version of the toolbar and it is packed with information about that page load,

including request info, response info and even a super-cool performance tab. This is not only a

nice way to debug the performance of your app, it's also a great way to... just understand what's

going on inside Symfony.

{

 "require-dev": {

 "symfony/profiler-pack": "^1.0"

 },

}

There are other sections for Twig, configuration, caching and eventually there will be a tab to

debug database queries. By the way, this isn't just for HTML pages: you can also access the

profiler for AJAX calls that you make to your app. I'll show you how later.

The dump() and dd() Functions

When we installed the profiler, we also got one other handy tool called dump() . I'll click back a

few times to get to the page. Open up the controller:

src/Controller/QuestionController.php .

Imagine we want to debug a variable. Normally I'd use var_dump() . Instead, use dump()

and let's dump the $slug and... how about $this object itself.

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 35

36

37

When we refresh, woh! It works exactly like var_dump() except... way more beautiful and

useful. The controller apparently has a container property... and we can dig deeper and

deeper.

If you're really lazy... like most of us are... you can also use dd() which stands for dump()

and die() .

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 dump($slug, $this);

 }

}

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 35

36

37

Now when we reload... it dumps, but also kills the page. We've now perfected dump-and-die-

driven development. I think we should be proud?

Installing the debug Package

Change that back to dump() ... and let's just dump() $this .

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 21

22

23

 // ... lines 24 - 29

30

 // ... lines 31 - 35

36

37

There's one other library that we can install for debugging tools. This one is less important - but

still nice to have. At your terminal, run:

composer require debug

This time I'm not using --dev because this will install something that I do want on production.

It installs DebugBundle - that's not something we need on production - but also Monolog, which

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 dd($slug, $this);

 }

}

class QuestionController extends AbstractController

{

 public function show($slug)

 {

 dump($this);

 }

}

is a logging library. And we probably do want to log things on production.

Composer Packs?

Before we talk about what this gave us, check out the name of the package it installed:

debug-pack . This is not the first time that we've installed a library with "pack" in its name.

A "pack" is a special concept in Symfony: it's sort of a "fake" package whose only job is to help

install several packages at once. Check it out: copy the package name, find your browser, and

go to https://github.com/symfony/debug-pack. Woh! It's nothing more than a composer.json

file! This gives us an easy way to install just this package... but actually get all of these libraries.

 Tip

In my project, installing a "pack" would add just one line to composer.json :

symfony/debug-pack . But starting in symfony/flex 1.9, when you install a pack,

instead of adding symfony/debug-pack to composer.json , it will add these 5

packages instead. You still get the same code, but this makes it easier to manage the

package versions.

So thanks to this, we have two new things in our app. The first is a logger! If we refresh the

page... and click into the profiler, we have a "Logs" section that shows us all the logs for that

request. These are also being saved to a var/log/dev.log file.

The second new thing in our app is... well... if you were watching closely, the dump() is gone

from the page! The DebugBundle integrates the dump() function even more into Symfony.

Now if you use dump() , instead of printing in the middle of the page, it puts it down here on the

web debug toolbar. You can click it to see a bigger version. It's not that important... just another

example of how Symfony gets smarter as you install more stuff.

The server:dump Command

Oh, while we're talking about it, the DebugBundle gave us one handle new console command.

At your terminal, run:

https://github.com/symfony/debug-pack

php bin/console server:dump

This starts a little server in the background. Now whenever dump() is called in our code, it still

shows up on the toolbar... but it also gets dumped out in the terminal! That's a great way to see

dumped data for AJAX requests. I'll hit Control-C to stop that.

Unpacking Packs

Oh, and about these "packs", if you open your composer.json file, the one problem with

packs is that we only have debug-pack version 1.0 here: we can't control the versions of the

packages inside. You just get whatever versions the pack allows.

composer.json

1

 // ... lines 2 - 3

4

 // ... lines 5 - 9

10

 // ... lines 11 - 15

16

 // ... lines 17 - 68

69

If you need more control, no problem... just unpack the pack:

composer unpack symfony/debug-pack

That does exactly what you expect: it removes debug-pack from composer.json and adds

its underlying packages, like debug-bundle and monolog . Oh, and because the

profiler-pack is a dependency of the debug-pack , it's in both places. I'll remove the extra

one from require .

{

 "require": {

 "symfony/debug-pack": "^1.0",

 },

}

composer.json

1

 // ... lines 2 - 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 // ... lines 21 - 72

73

Next, let's make our site prettier by bringing CSS into our app.

{

 "require": {

 "php": "^7.2.5",

 "ext-ctype": "*",

 "ext-iconv": "*",

 "easycorp/easy-log-handler": "^1.0.7",

 "sensio/framework-extra-bundle": "^5.5",

 "symfony/console": "5.0.*",

 "symfony/debug-bundle": "5.0.*",

 "symfony/dotenv": "5.0.*",

 "symfony/flex": "^1.3.1",

 "symfony/framework-bundle": "5.0.*",

 "symfony/monolog-bundle": "^3.0",

 "symfony/profiler-pack": "*",

 "symfony/twig-pack": "^1.0",

 "symfony/var-dumper": "5.0.*",

 "symfony/yaml": "5.0.*"

 },

}

Chapter 11: Assets: CSS, Images, etc

We're doing really well, but yikes! Our site is ugly. Time to fix that.

If you download the course code from this page, after you unzip it, you'll find a start/

directory with a tutorial/ directory inside: the same tutorial/ directory you see here.

We're going to copy a few files from it over the next few minutes.

Copying the Base Layout & Main CSS File

The first is base.html.twig . I'll open it up, copy its contents, close it, and then open our

templates/base.html.twig . Paste the new stuff here.

templates/base.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

This was not a huge change: this added some CSS files - including Bootstrap - and some basic

HTML markup. But we have the same blocks as before: {% block body %} in the middle,

{% block javascripts %} , {% block title %} , etc.

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>{% block title %}Welcome!{% endblock %}</title>

 {% block stylesheets %}

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.c

integrity="sha384-

Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"

crossorigin="anonymous">

 <link rel="stylesheet" href="https://fonts.googleapis.com/css?

family=Spartan&display=swap">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.12.1/css/all.min.css" integrity="sha256-

mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />

 <link rel="stylesheet" href="/css/app.css">

 {% endblock %}

 </head>

 <body>

 <nav class="navbar navbar-light bg-light" style="height: 100px;">

 <i style="color: #444; font-size: 2rem;" class="pb-1 fad fa-

cauldron"></i>

 <p class="pl-2 d-inline font-weight-bold" style="color:

#444;">Cauldron Overflow</p>

 <button class="btn btn-dark">Sign up</button>

 </nav>

 {% block body %}{% endblock %}

 <footer class="mt-5 p-3 text-center">

 Made with <i style="color: red;" class="fa fa-heart"></i> by

the guys and gals at <a style="color: #444; text-decoration: underline;"

href="https://symfonycasts.com">SymfonyCasts

 </footer>

 {% block javascripts %}{% endblock %}

 </body>

</html>

Notice that the link tags are inside a block called stylesheets . But that's not important yet. I'll

explain why it's done that way a bit later.

templates/base.html.twig

1

2

3

 // ... lines 4 - 5

6

7

8

9

10

11

12

 // ... lines 13 - 27

28

One of the link tags is pointing to /css/app.css . That's another file that lives in this

tutorial/ directory. In fact, select the images/ directory and app.css and copy both.

Now, select the public/ folder and paste. Add another css/ directory and move app.css

inside.

Remember: the public/ directory is our document root. So if you need a file to be accessible

by a user's browser, it needs to live here. The path /css/app.css will load this

public/css/app.css file.

Let's see what this looks like! Spin over to your browser and refresh. Much better. The middle

still looks terrible... but that's because we haven't added any markup to the template for this

page.

Does Symfony Care about your Assets

<!DOCTYPE html>

<html>

 <head>

 {% block stylesheets %}

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.c

integrity="sha384-

Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"

crossorigin="anonymous">

 <link rel="stylesheet" href="https://fonts.googleapis.com/css?

family=Spartan&display=swap">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.12.1/css/all.min.css" integrity="sha256-

mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />

 <link rel="stylesheet" href="/css/app.css">

 {% endblock %}

 </head>

</html>

So let me ask a question... and answer it: what features does Symfony offer when it comes to

CSS and JavaScript? The answer is... none... or a lot!

Symfony has two different levels of integration with CSS and JavaScript. Right now, we're using

the basic level. Really, right now, Symfony isn't doing anything for us: we created a CSS file,

then added a very traditional link tag to it in HTML. Symfony is doing nothing: it's all up to you.

The other, bigger level of integration is to use something called Webpack Encore: a fantastic

library that handles minification, Sass support, React or Vue.js support and many other things.

I'll give you a crash course into Webpack Encore at the end of this tutorial.

But right now, we're going to keep it simple: you create CSS or JavaScript files, put them in the

public/ directory, and then create link or script tags that point to them.

The Not-So-Important asset() Function

Well, actually, even with this, "basic" integration, there is one small Symfony feature you should

use.

Before I show you, go into your PhpStorm preference... and search again for "Symfony" to find

the Symfony plugin. See this web directory option? Change that to public/ - this was called

web/ in older versions of Symfony. This will give us better auto-completion soon. Hit "Ok".

Here's the deal: whenever you reference a static file on your site - like a CSS file, JavaScript file

or image, instead of just putting /css/app.css , you should use a Twig function called

asset() . So, {{ asset() }} and then the same path as before, but without the opening / :

css/app.css .

templates/base.html.twig

 // ... line 1

2

3

 // ... lines 4 - 5

6

 // ... lines 7 - 9

10

11

12

 // ... lines 13 - 27

28

<html>

 <head>

 {% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('css/app.css') }}">

 {% endblock %}

 </head>

</html>

What does this super-cool-looking asset() function do? Almost... nothing. In fact, this will

output the exact same path as before: /css/app.css .

So why are we bothering to use a function that does nothing? Well, it does do two things...

which you may or may not care about. First, if you decide to deploy your app to a subdirectory

of a domain - like ILikeMagic.com/cauldron_overflow , the asset() function will

automatically prefix all the paths with /cauldron_overflow . Super great... if you care.

The second thing it does is more useful: if you decide to deploy your assets to a CDN, by

adding one line to one config file, suddenly, Symfony will prefix every path with the URL to your

CDN.

So... it's really not that important, but if you use asset() everywhere, you'll be happy later

when you need it.

But... if we move over and refresh... surprise! It explodes!

“Did you forget to run composer require symfony/asset? Unknown function asset .”

How cool is that? Remember, Symfony starts small: you install things when you need them. In

this case, we're trying to use a feature that's not installed... so Symfony gives us the exact

command we need to run. Copy it, move over and go:

composer require symfony/asset

When this finishes... move back over and... it works. If you look at the HTML source and search

for app.css ... yep! It's printing the same path as before.

Making the "show" page Pretty

Let's make the middle of our page look a bit nicer. Back in the tutorial/ directory, open

show.html.twig , copy its contents, close it, then open up our version:

templates/question/show.html.twig . Paste the new code.

templates/question/show.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

{% extends 'base.html.twig' %}

{% block title %}Question: {{ question }}{% endblock %}

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <h2 class="my-4">Question</h2>

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="/images/tisha.png" width="100"

height="100">

 </div>

 <div class="col">

 <h1 class="q-title-show">{{ question }}</h1>

 <div class="q-display p-3">

 <i class="fa fa-quote-left mr-3"></i>

 <p class="d-inline">I've been turned into

a cat, any thoughts on how to turn back? While I'm adorable, I don't

really care for cat food.</p>

 <p class="pt-4">--Tisha

</p>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 <div class="d-flex justify-content-between my-4">

 <h2 class="">Answers ({{

answers|length }})</h2>

 <button class="btn btn-sm btn-secondary">Submit an Answer</button>

 </div>

 <ul class="list-unstyled">

 {% for answer in answers %}

 <li class="mb-4">

 <div class="d-flex justify-content-center">

 <div class="mr-2 pt-2">

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Once again, there's nothing important happening here: we're still overriding the same title

and body blocks. We're still using the same question variable and we're still looping over the

answers down here. There's just a lot of extra markup... which... ya know... makes things

pretty.

When we refresh... see! Pretty! Back in the template, notice that this page has a few img tags...

but these are not using the asset() function. Let's fix that. I'll use a shortcut! I can just type

"tisha", hit tab and... boom! It takes care of the rest. Search for img ... and replace this one too

with "tisha". Wondering who tisha is? Oh, just one of the several cats we keep on staff here at

SymfonyCasts. This one manages Vladimir.

 <img src="/images/tisha.png" width="50"

height="50">

 </div>

 <div class="mr-3 pt-2">

 {{ answer }}

 <p>-- Mallory</p>

 </div>

 <div class="vote-arrows flex-fill pt-2" style="min-

width: 90px;">

 <i class="far fa-

arrow-alt-circle-up"></i>

 <i class="far fa-

arrow-alt-circle-down"></i>

 + 6

 </div>

 </div>

 {% endfor %}

</div>

{% endblock %}

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

7

8

 // ... line 9

10

11

12

13

14

15

 // ... lines 16 - 23

24

25

26

27

28

 // ... lines 29 - 36

37

38

39

40

41

42

43

 // ... lines 44 - 52

53

54

55

56

57

58

By the way, in a real app, instead of these images being static files in our project, that might be

files that users upload. Don't worry: we have an entire tutorial on handling file uploads.

Make sure this works and... it does.

Styling the Homepage

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container-show p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ asset('images/tisha.png') }}"

width="100" height="100">

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 <ul class="list-unstyled">

 {% for answer in answers %}

 <li class="mb-4">

 <div class="d-flex justify-content-center">

 <div class="mr-2 pt-2">

 <img src="{{ asset('images/tisha.png') }}"

width="50" height="50">

 </div>

 </div>

 {% endfor %}

</div>

{% endblock %}

https://symfonycasts.com/screencast/symfony-uploads

The last page that we haven't styled is the homepage... which right now... prints some text.

Open its controller: src/Controller/QuestionController.php . Yep! It's just

return new Response() and text. We can do better. Replace this with

return $this->render() . Let's call the template question/homepage.html.twig .

And... right now... I don't think we need to pass any variables into the template... so I'll leave the

second argument off.

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

 // ... lines 18 - 34

35

Inside templates/question/ , create the new file: homepage.html.twig .

Most templates start the exact same way. Yay consistency! On top,

{% extends 'base.html.twig' %} , {% block body %} and {% endblock %} . In

between, add some markup so we can see if this is working.

templates/question/homepage.html.twig

1

2

3

4

5

Ok... refresh the page and... excellent! Except for the "this looks totally awful" part.

Let's steal some code from the tutorial/ directory one last time. Open

homepage.html.twig . This is just a bunch of hardcoded markup to make things look nicer.

Copy it, close that file... and then paste it over our homepage.html.twig code.

class QuestionController extends AbstractController

{

 public function homepage()

 {

 return $this->render('question/homepage.html.twig');

 }

}

{% extends 'base.html.twig' %}

{% block body %}

 <h1>Voilà</h1>

{% endblock %}

templates/question/homepage.html.twig

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

{% extends 'base.html.twig' %}

{% block body %}

<div class="jumbotron-img jumbotron jumbotron-fluid">

 <div class="container">

 <h1 class="display-4">Your Questions Answered</h1>

 <p class="lead">And even answers for those questions you didn't

think to ask!</p>

 </div>

</div>

<div class="container">

 <div class="row mb-3">

 <div class="col">

 <button class="btn btn-question">Ask a Question</button>

 </div>

 </div>

 <div class="row">

 <div class="col-12">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ asset('images/tisha.png') }}"

width="100" height="100">

 <div class="d-block mt-3 vote-arrows">

 <i class="far

fa-arrow-alt-circle-up"></i>

 <i

class="far fa-arrow-alt-circle-down"></i>

 </div>

 </div>

 <div class="col">

 <h2>Reversing a

Spell</h2>

 <div class="q-display p-3">

 <i class="fa fa-quote-left mr-3"></i>

 <p class="d-inline">I've been turned into

a cat, any thoughts on how to turn back? While I'm adorable, I don't

really care for cat food.</p>

 <p class="pt-4">--Tisha

</p>

 </div>

 </div>

 </div>

 </div>

 <p class="q-display-response text-center p-3">

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

And now... it looks much better.

So that's the basic CSS and JavaScript integration inside of Symfony: you manage it yourself.

Sure, you should use this asset() function, but it's not doing anything too impressive.

 <i class="fa fa-magic magic-wand"></i> 6 answers

 </p>

 </div>

 </div>

 <div class="col-12 mt-3">

 <div class="q-container p-4">

 <div class="row">

 <div class="col-2 text-center">

 <img src="{{ asset('images/magic-photo.png') }}"

width="100" height="100">

 <div class="d-block mt-3 vote-arrows">

 <i class="far fa-

arrow-alt-circle-up"></i>

 <i class="far

fa-arrow-alt-circle-down"></i>

 </div>

 </div>

 <div class="col">

 <h2>Pausing a

Spell</h2>

 <div class="q-display p-3">

 <i class="fa fa-quote-left mr-3"></i>

 <p class="d-inline">I mastered the floating

card, but now how do I get it back to the ground?</p>

 <p class="pt-4">--Jerry</p>

 </div>

 </div>

 </div>

 </div>

 <p class="q-display-response text-center p-3">

 <i class="fa fa-magic magic-wand"></i> 15 answers

 </p>

 </div>

 </div>

</div>

{% endblock %}

If you want more, you're in luck! In the last chapter, we'll take our assets up to the next level.

You're going to love it.

Next: our site now has some links on it! And they all go nowhere! Let's learn how to generate

URLs to routes.

Chapter 12: Generate URLs

Go back to the "show" page for a question. The logo on top is a link... that doesn't go anywhere

yet. This should take us back to the homepage.

Because this is part of the layout, the link lives in base.html.twig . Here it is:

navbar-brand with href="#" .

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 12

13

14

15

 // ... lines 16 - 17

18

 // ... line 19

20

 // ... lines 21 - 26

27

28

To make this link back to the homepage, we can just change this to / , right? You could do this,

but in Symfony, a better way is to ask Symfony to generate the URL to this route. That way, if

we decide to change this URL later, all our links will update automatically.

Each Route Has a Name!

To see how to do that, find your terminal and run:

php bin/console debug:router

This lists every route in the system... and hey! Since the last time we ran this, there are a bunch

of new routes. These power the web debug toolbar and the profiler and are added automatically

<html>

 <body>

 <nav class="navbar navbar-light bg-light" style="height: 100px;">

 </nav>

 </body>

</html>

by the WebProfilerBundle when we're in dev mode.

Anyways, what I really want to look at is the "Name" column. Every route has an internal name,

including the two routes that we made. Apparently their names are app_question_homepage

and app_question_show . But... uh... where did those come from? I don't remember typing

either of these!

So... every route must be given an internal name. But when you use annotation routes... it lets

you cheat: it chooses a name for you based on the controller class and method... which is

awesome!

But... as soon as you need to generate the URL to a route, I recommend giving it an explicit

name, instead of relying on this auto-generated name, which could change suddenly if you

rename your method. To give the route a name, add name="" and... how about:

app_homepage .

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... line 16

17

 // ... lines 18 - 34

35

I like to keep my route names short, but app_ makes it long enough that I could search my

project for this string if I ever needed to.

Now if we run debug:router again:

php bin/console debug:router

Nice! We are in control of the route's name. Copy the app_homepage name and then go back

to base.html.twig . The goal is simple, we want to say:

class QuestionController extends AbstractController

{

 /**

 * @Route("/", name="app_homepage")

 */

 public function homepage()

 {

 }

}

“Hey Symfony! Can you please give me the URL to the app_homepage route?”

To do that in Twig, use {{ path() }} and pass it the route name.

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 12

13

14

15

 // ... lines 16 - 17

18

 // ... line 19

20

 // ... lines 21 - 26

27

28

That's it! When we move over and refresh... now this links to the homepage.

Linking to a Route with {Wildcards}

On the homepage, we have two hard-coded questions... and each has two links that currently

go nowhere. Let's fix these!

Step one: now that we want to generate a URL to this route, find the route and add

name="app_question_show" .

src/Controller/QuestionController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 18

19

20

21

22

23

 // ... lines 24 - 33

34

35

<html>

 <body>

 <nav class="navbar navbar-light bg-light" style="height: 100px;">

 </nav>

 </body>

</html>

class QuestionController extends AbstractController

{

 /**

 * @Route("/questions/{slug}", name="app_question_show")

 */

 public function show($slug)

 {

 }

}

Copy this and open the template: templates/question/homepage.html.twig . Let's

see... right below the voting stuff, here's the first link to a "Reversing a spell" question. Remove

the pound sign, add {{ path() }} and paste in app_question_show .

But... we can't stop here. If we try the page now, a glorious error!

“Some mandatory parameters are missing - "slug"”

That makes sense! We can't just say "generate the URL to app_question_show " because

that route has a wildcard! Symfony needs to know what value it should use for {slug} . How

do we tell it? Add a second argument to path() with {} . The {} is a Twig associative array...

again, just like JavaScript. Pass slug set to... let's see... this is a hardcoded question right

now, so hardcode reversing-a-spell .

templates/question/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 15

16

17

18

19

20

 // ... lines 21 - 27

28

29

 // ... lines 30 - 34

35

36

37

38

 // ... lines 39 - 41

42

43

44

 // ... lines 45 - 71

72

73

74

 // ... lines 75 - 76

Copy that entire thing, because there's one other link down here for the same question. For the

second question... paste again, but change it to pausing-a-spell to match the name. I'll

copy that... find the last spot... and paste.

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12">

 <div style="box-shadow: 2px 3px 9px 4px rgba(0,0,0,0.04);">

 <div class="q-container p-4">

 <div class="row">

 <div class="col">

 <a class="q-title" href="{{

path('app_question_show', { slug: 'reversing-a-spell' }) }}"><h2>Reversing

a Spell</h2>

 </div>

 </div>

 </div>

 <a class="answer-link" href="{{ path('app_question_show',

{ slug: 'reversing-a-spell' }) }}" style="color: #fff;">

 </div>

 </div>

 </div>

</div>

{% endblock %}

templates/question/homepage.html.twig

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 15

16

 // ... lines 17 - 45

46

47

48

 // ... lines 49 - 55

56

57

 // ... lines 58 - 62

63

64

65

66

 // ... lines 67 - 69

70

71

72

73

74

 // ... lines 75 - 76

Later, when we introduce a database, we'll make this fancier and avoid repeating ourselves so

many times. But! If we move over, refresh... and click a link, it works! Both pages go to the same

route, but with a different slug value.

Next, let's take our site to the next level by creating a JSON API endpoint that we will consume

with JavaScript.

{% block body %}

<div class="container">

 <div class="row">

 <div class="col-12 mt-3">

 <div class="q-container p-4">

 <div class="row">

 <div class="col">

 <a class="q-title" href="{{

path('app_question_show', { slug: 'pausing-a-spell' }) }}"><h2>Pausing a

Spell</h2>

 </div>

 </div>

 </div>

 <a class="answer-link" href="{{ path('app_question_show', {

slug: 'pausing-a-spell' }) }}" style="color: #fff;">

 </div>

 </div>

</div>

{% endblock %}

Chapter 13: JSON API Endpoint

One of the features on our site... which doesn't work yet... is that you can up and down vote

answers to a question. Eventually, when you click up or down, this will make an AJAX request to

an API endpoint that we will make. That endpoint will save the vote to the database and

respond with JSON that contains the new vote count so that our JavaScript can update this vote

number.

We don't have a database in our app yet, but we're ready to build every other part of this

feature.

Creating a JSON Endpoint

Let's start by creating a JSON API endpoint that will be hit via AJAX when a user up or down

votes an answer.

We could create this in QuestionController as a new method. But since this endpoint

really deals with a "comment", let's create a new controller class. Call it CommentController .

Like before, we're going to say extends AbstractController and hit tab so that

PhpStorm autocompletes this and adds the use statement on top. Extending this class gives

us shortcut methods... and I love shortcuts!

src/Controller/CommentController.php

 // ... lines 1 - 2

3

4

5

6

7

8

9

Inside, create a public function . This could be called anything... how about

commentVote() . Add the route above: /** , then @Route . Auto-complete the one from the

Routing component so that PhpStorm adds its use statement.

namespace App\Controller;

use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class CommentController extends AbstractController

{

}

For the URL, how about /comments/{id} - this will eventually be the id of the specific

comment in the database - /vote/{direction} , where {direction} will either be the

word up or the word down .

And because we have these two wildcards, we can add two arguments: $id and

$direction . I'll start with a comment: the $id will be super important later when we have a

database... but we won't use it at all right now.

src/Controller/CommentController.php

 // ... lines 1 - 6

7

 // ... line 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

27

Without a database, we'll kinda fake the logic. If $direction === 'up' , then we would

normally save this up-vote to the database and query for the new vote count. Instead, say

$currentVoteCount = rand(7, 100) .

use Symfony\Component\Routing\Annotation\Route;

class CommentController extends AbstractController

{

 /**

 * @Route("/comments/{id}/vote/{direction}")

 */

 public function commentVote($id, $direction)

 {

 }

}

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

18

19

20

21

 // ... line 22

23

 // ... lines 24 - 25

26

27

The vote counts in the template are hardcoded to 6. So this will make the new vote count

appear to be some random number higher than that. In the else, do the opposite: a random

number between 0 and 5.

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 25

26

27

Yes, this will all be much cooler when we have a database, but it will work great for our

purposes.

class CommentController extends AbstractController

{

 public function commentVote($id, $direction)

 {

 // todo - use id to query the database

 // use real logic here to save this to the database

 if ($direction === 'up') {

 $currentVoteCount = rand(7, 100);

 } else {

 }

 }

}

class CommentController extends AbstractController

{

 public function commentVote($id, $direction)

 {

 // todo - use id to query the database

 // use real logic here to save this to the database

 if ($direction === 'up') {

 $currentVoteCount = rand(7, 100);

 } else {

 $currentVoteCount = rand(0, 5);

 }

 }

}

Returning JSON?

The question now is: after "saving" the vote to the database, what should this controller return?

Well it should probably return JSON... and I know that I want to include the new vote count in its

data so our JavaScript can use that to update the vote number text.

So... how do we return JSON? Remember: our only job in a controller is to return a Symfony

Response object. JSON is nothing more than a response whose body is a JSON string instead

of HTML. So we could say: return new Response() with json_encode() of some data.

But! Instead, return new JsonResponse() - auto-complete this so that PhpStorm adds the

use statement. Pass this an array with the data we want. How about a votes key set to

$currentVoteCount .

src/Controller/CommentController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 8

9

10

 // ... lines 11 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Now... you may be thinking:

“Ryan! You keep saying that we must return a Response object... and you just returned

something different. This is madness!”

use Symfony\Component\HttpFoundation\JsonResponse;

class CommentController extends AbstractController

{

 public function commentVote($id, $direction)

 {

 // todo - use id to query the database

 // use real logic here to save this to the database

 if ($direction === 'up') {

 $currentVoteCount = rand(7, 100);

 } else {

 $currentVoteCount = rand(0, 5);

 }

 return new JsonResponse(['votes' => $currentVoteCount]);

 }

}

Fair point. But! If you hold Command or Ctrl and click the JsonResponse class, you'll learn

that JsonResponse extends Response . This class is nothing more than a shortcut for

creating JSON responses: it JSON encodes the data we pass to it and makes sure that the

Content-Type header is set to application/json , which helps AJAX libraries understand

that we're returning JSON data.

So... ah! Let's test out our shiny-new API endpoint! Copy the URL, open a new browser tab,

paste and fill in the wildcards: how about 10 for {id} and vote "up". Hit enter. Hello JSON

endpoint!

The big takeaway is this: JSON responses are nothing special.

The json() Shortcut Method

The JsonResponse class makes life easier... but we can be even lazier! Instead of

new JsonResponse , just say return $this->json() .

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

 // ... lines 11 - 13

14

15

 // ... lines 16 - 24

25

26

27

That changes nothing: it's a shortcut method to create the same JsonResponse object. Easy

peasy.

The Symfony Serializer

By the way, one of the "components" in Symfony is called the "Serializer", and it's really good at

converting objects into JSON or XML. We don't have it installed yet, but if we did, the

$this->json() would start using it to serialize whatever we pass. That wouldn't make any

difference in our case with an array, but it means that you could start passing objects to

class CommentController extends AbstractController

{

 public function commentVote($id, $direction)

 {

 return $this->json(['votes' => $currentVoteCount]);

 }

}

$this->json() . If you want to learn more - or want to build a super-rich API - check out our

tutorial about API Platform: an amazing Symfony bundle for building APIs.

Next, let's write some JavaScript that will make an AJAX call to our new endpoint. We'll also

learn how to add global Javascript as well as page-specific JavaScript.

https://symfonycasts.com/screencast/api-platform

Chapter 14: JavaScript, AJAX & the Profiler

Here's our next goal: write some JavaScript so that that when we click the up or down vote

icons, it will make an AJAX request to our JSON endpoint. This "fakes" saving the vote to the

database and returns the new vote count, which we will use to update the vote number on the

page.

Adding js- Classes to the Template

The template for this page is: templates/question/show.html.twig . For each answer,

we have these vote-up and vote-down links. I'm going to add a few classes to this section

to help our JavaScript. On the vote-arrows element, add a js-vote-arrows class: we'll

use that in JavaScript to find this element. Then, on the vote-up link, add a data attribute

called data-direction="up" . Do the same for the down link: data-direction="down" .

This will help us know which link was clicked. Finally, surround the vote number - the 6 - with a

span that has another class: js-vote-total . We'll use that to find the element so we can

update that number.

templates/question/show.html.twig

 // ... lines 1 - 4

5

6

 // ... lines 7 - 36

37

38

39

40

 // ... lines 41 - 47

48

49

50

51

52

53

54

55

56

57

58

Adding JavaScript inside the javascripts Block.

To keep things simple, the JavaScript code we are going to write will use jQuery. In fact, if your

site uses jQuery, you probably will want to include jQuery on every page... which means that we

want to add a script tag to base.html.twig . At the bottom, notice that we have a block

called javascripts . Inside this block, I'm going to paste a <script> tag to bring in jQuery

from a CDN. You can copy this from the code block on this page, or go to jQuery to get it.

 Tip

In new Symfony projects, the javascripts block is at the top of this file - inside the

<head> tag. You can keep the javascripts block up in <head> or move it down here. If

you keep it up inside head , be sure to add a defer attribute to every script tag: this will

cause your JavaScript to be executed after the page loads.

{% block body %}

<div class="container">

 <ul class="list-unstyled">

 {% for answer in answers %}

 <li class="mb-4">

 <div class="d-flex justify-content-center">

 <div class="vote-arrows flex-fill pt-2 js-vote-arrows"

style="min-width: 90px;">

 <i

class="far fa-arrow-alt-circle-up"></i>

 <a class="vote-down" href="#" data-

direction="down"><i class="far fa-arrow-alt-circle-down"></i>

 + 6

 </div>

 </div>

 {% endfor %}

</div>

{% endblock %}

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 12

13

 // ... lines 14 - 25

26

27

28

29

30

31

32

33

If you're wondering why we put this inside of the javascripts block... other than it "seems"

like a logical place, I'll show you why in a minute. Because technically, if we put this after the

javascripts block or before, it would make no difference right now. But putting it inside will

be useful soon.

For our custom JavaScript, inside the public/ directory, create a new directory called js/ .

And then a new file: question_show.js .

Here's the idea: usually you will have some custom JavaScript that you want to include on every

page. We don't have any right now, but if we did, I would create an app.js file and add a

script tag for it in base.html.twig . Then, on certain pages, you might also need to

include some page-specific JavaScript, like to power a comment-voting feature that only lives

on one page.

That's what I'm doing and that's why I created a file called question_show.js : it's custom

JavaScript for that page.

Inside question_show.js , I'm going to paste about 15 lines of code.

<html>

 <body>

 {% block javascripts %}

 <script

 src="https://code.jquery.com/jquery-3.4.1.min.js"

 integrity="sha256-

CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

 crossorigin="anonymous"></script>

 {% endblock %}

 </body>

</html>

public/js/question_show.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

This finds the .js-vote-arrows element - which we added here - finds any a tags inside,

and registers a click listener on them. On click, we make an AJAX request to

/comments/10 - the 10 is hardcoded for now - /vote/ and then we read the

data-direction attribute off of the anchor element to know if this is an up vote or down

vote. On success, jQuery passes us the JSON data from our endpoint. Let's rename that

variable to data to be more accurate.

public/js/question_show.js

 // ... lines 1 - 4

5

 // ... lines 6 - 8

9

 // ... lines 10 - 11

12

13

14

15

Then we use the votes field from the data - because in our controller we're returning a votes

key - to update the vote total.

Overriding the javascripts Block

So... how do we include this file? If we wanted to include this on every page, it would be pretty

easy: add another script tag below jQuery in base.html.twig . But we want to include this

/**

 * Simple (ugly) code to handle the comment vote up/down

 */

var $container = $('.js-vote-arrows');

$container.find('a').on('click', function(e) {

 e.preventDefault();

 var $link = $(e.currentTarget);

 $.ajax({

 url: '/comments/10/vote/'+$link.data('direction'),

 method: 'POST'

 }).then(function(response) {

 $container.find('.js-vote-total').text(response.votes);

 });

});

$container.find('a').on('click', function(e) {

 $.ajax({

 }).then(function(data) {

 $container.find('.js-vote-total').text(data.votes);

 });

});

only on the show page. This is where having the jQuery script tag inside of a javascripts

block is handy. Because, in a "child" template, we can override that block.

Check it out: in show.html.twig , it doesn't matter where - but let's go to the bottom, say

{% block javascripts %} {% endblock %} . Inside, add a <script> tag with

src="" . Oh, we need to remember to use the asset() function. But... PhpStorm is

suggesting js/question_show.js . Select that. Nice! It added the asset() function for us.

templates/question/show.html.twig

 // ... lines 1 - 59

60

 // ... lines 61 - 62

63

64

If we stopped now, this would literally override the javascripts block of base.html.twig .

So, jQuery would not be included on the page. Instead of overriding the block, what we really

want to do is add to it! In the final HTML, we want our new script tag to go right below

jQuery.

How can we do this? Above our script tag, say {{ parent() }} .

templates/question/show.html.twig

 // ... lines 1 - 59

60

61

62

63

64

I love that! The parent() function gets the content of the parent block, and prints it.

Let's try this! Refresh and... click up. It updates! And if we hit down, we see a really low number.

AJAX Requests on the Profiler

Oh, and see this number "6" down on the web debug toolbar? This is really cool. Refresh the

page. Notice that the icon is not down here. But as soon as our page makes an AJAX requests,

it shows up! Yep, the web debug toolbar detects AJAX requests and lists them here. The best

{% block javascripts %}

 <script src="{{ asset('js/question_show.js') }}"></script>

{% endblock %}

{% block javascripts %}

 {{ parent() }}

 <script src="{{ asset('js/question_show.js') }}"></script>

{% endblock %}

part is that you can use this to jump into the profiler for any of these requests! I'll right click and

open this "down" vote link in a new tab.

This is the full profiler for that request in all its glory. If you use dump() somewhere in your

code, the dumped variable for that AJAX requests will be here. And later, a database section will

be here. This is a killer feature.

Next, let's tighten up our API endpoint: we shouldn't be able to make a GET request to it - like

loading it in our browser. And... do we have anything that validates that the {direction}

wildcard in the URL is either up or down but nothing else? Not yet.

Chapter 15: Smart Routes: POST-only & Validate
{Wildcards}

Inside our JavaScript, we're making a POST request to the endpoint. And that makes sense.

The topic of "which HTTP method" - like GET, POST, PUT, etc - you're supposed to use for an

API endpoint... can get complicated. But because our endpoint will eventually change

something in the database, as a best-practice, we don't want to allow people to make a GET

request to it. Right now, we can make a GET request by just putting the URL in our browser.

Hey! I just voted!

To tighten this up, in CommentController , we can make our route smarter: we can tell it to

only match if the method is POST. To do that add methods="POST" .

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

27

As soon as we do that, when we refresh... 404 not found! The route no longer matches.

 Tip

Actually, it's a 405 response code! HTTP Method Not Allowed.

The router:match Command

Another cool way to see this is at your terminal. Run: php bin/console router:match .

Then go copy the URL... and paste it.

class CommentController extends AbstractController

{

 /**

 * @Route("/comments/{id}/vote/{direction}", methods="POST")

 */

 public function commentVote($id, $direction)

 {

 }

}

php bin/console router:match /comments/10/vote/up

This fun command tells us which route matches a given URL. In this case, no routes match, but

it tells us that it almost matched the app_comment_commentvote route.

To see if a POST request would match this route, pass --method=POST :

php bin/console router:match /comments/10/vote/up --method=POST

And... boom! It shows us the route that matched and ALL its details, including the controller.

Restricting what a {Wildcard} Matches

But there's something else that's not quite right with our route. We're expecting that the

{direction} part will either be up or down . But... technically, somebody could put banana

in the URL. In fact, let's try that: change the direction to banana :

php bin/console router:match /comments/10/vote/banana --method=POST

Yes! We vote "banana" for this comment! This isn't the end of the world... if a bad user tried to

hack our system and did this, it would just be a down vote. But we can make this better.

As you know, normally a wildcard matches anything. However, if you want, you can control that

with a regular expression. Inside the {} , but after the name, add <> . Inside, say up|down .

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

27

Now try the router:match command:

php bin/console router:match /comments/10/vote/banana --method=POST

Yes! It does not match because banana is not up or down. If we change this to up , it works:

php bin/console router:match /comments/10/vote/up --method=POST

Making id Only Match an Integer?

By the way, you might be tempted to also make the {id} wildcard smarter. Assuming we're

using auto-increment database ids, we know that id should be an integer. To make this route

only match if the id part is a number, you can add <\d+> , which means: match a "digit" of any

length.

class CommentController extends AbstractController

{

 /**

 * @Route("/comments/{id}/vote/{direction<up|down>}", methods="POST")

 */

 public function commentVote($id, $direction)

 {

 }

}

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

27

But... I'm actually not going to put that here. Why? Eventually, we're going to use $id to query

the database. If somebody puts banana here, who cares? The query won't find any comment

with an id of banana and we will add some code to return a 404 page. Even if somebody tries

an SQL injection attack, as you'll learn later in our database tutorial, it will still be ok, because

the database layer protects against this.

src/Controller/CommentController.php

 // ... lines 1 - 8

9

10

11

12

13

14

15

 // ... lines 16 - 25

26

27

Let's make sure everything still works. I'll close one browser tab and refresh the show page.

Yea! Voting still looks good.

Next, let's get a sneak peek into the most fundamental part of Symfony: services.

class CommentController extends AbstractController

{

 /**

 * @Route("/comments/{id<\d+>}/vote/{direction<up|down>}",

methods="POST")

 */

 public function commentVote($id, $direction)

 {

 }

}

class CommentController extends AbstractController

{

 /**

 * @Route("/comments/{id}/vote/{direction<up|down>}", methods="POST")

 */

 public function commentVote($id, $direction)

 {

 }

}

Chapter 16: Service Objects

Symfony is really two parts... and we've already learned one of them.

The first part is the route and controller system. And I hope you're feeling pretty comfortable:

create a route, it executes a controller function, we return a response.

The second half of Symfony is all about the many "useful objects" that are floating around inside

Symfony. For example, when we render a template, what we're actually doing is taking

advantage of a twig object and asking it to render. The render() method is just a shortcut to

use that object. There is also a logger object, a cache object and many more, like a database

connection object and an object that helps make HTTP requests to other APIs.

Basically... every single thing that Symfony does - or that we do - is actually done by one of

these useful objects. Heck, even the router is an object that figures out which route matches the

current request.

In the Symfony world - well, really, in the object-oriented programming world - these "objects

that do work" are given a special name: services. But don't let that confuse you: when you hear

"service", just think:

“Hey! That's an object that does some work - like a logger object or a database object that

makes queries.”

Listing All Services

Inside CommentController , let's log something. To do that work, we need the "logger"

service. How can we get it?

Find your terminal and run:

php bin/console debug:autowiring

Say hello to one of the most important bin/console commands. This gives us a list of all the

service objects in our app. Well, ok, this isn't all of them: but it is a full list of all the services that

you are likely to need.

Even in our small app, there's a lot of stuff in here: there's something called

Psr\Log\LoggerInterface , there's stuff for caching and plenty more. As we install more

bundles, this list will grow. More services, means more tools.

To find which service allows us to "log" things, run:

php bin/console debug:autowiring log

This returns a bunch of things... but ignore all of these down here for now and focus on the top

line. This tells us that there is a logger service object and its class implements some

Psr\Log\LoggerInterface . Why is that important? Because if you want the logger service,

you ask for it by using this type-hint. It's called "autowiring".

Autowiring the Logger Service

Here's how you get a service from inside a controller. Add a third argument to your method -

though the argument order doesn't matter. Say LoggerInterface - auto-complete the one

from Psr\Log\LoggerInterface - and $logger .

src/Controller/CommentController.php

 // ... lines 1 - 4

5

 // ... lines 6 - 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 28

29

30

This added a use statement above the class for Psr\Log\LoggerInterface , which

matches the type-hint that debug:autowiring told us to use. Thanks to this type-hint, when

use Psr\Log\LoggerInterface;

class CommentController extends AbstractController

{

 public function commentVote($id, $direction, LoggerInterface $logger)

 {

 }

}

Symfony renders our controller, it will know that we want the logger service to be passed to this

argument.

So... yea: there are now two types of arguments that you can add to your controller method.

First, you can have an argument whose name matches a wildcard in your route. And second,

you can have an argument whose type-hint matches one of the class or interface names listed

in debug:autowiring . CacheInterface is another type-hint we could use to get a caching

service.

Using the Logger Service

So... let's use this object! What methods can we call on it? I have no idea! But because we

properly type-hinted the argument, we can say $logger-> and PhpStorm tells us exactly what

methods it has. Let's use $logger->info() to say "Voting up!". Copy that and say "Voting

down!" on the else.

src/Controller/CommentController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 19

20

21

 // ... line 22

23

24

 // ... line 25

26

 // ... lines 27 - 28

29

30

Testing time! Refresh the page and... let's click up, down, up. It... at least doesn't look broken.

Hover over the AJAX part of the web debug toolbar and open the profiler for one of these

requests. The profiler has a "Logs" section , which is the easiest way to see the log entries for a

single request. There it is! "Voting up!". You could also find this in the var/log/dev.log file.

class CommentController extends AbstractController

{

 public function commentVote($id, $direction, LoggerInterface $logger)

 {

 if ($direction === 'up') {

 $logger->info('Voting up!');

 } else {

 $logger->info('Voting down!');

 }

 }

}

The point is: Symfony has many, many useful objects, I mean "services". And little-by-little,

we're going to start using more of them... each time by adding a type-hint to tell Symfony which

service we need.

Autowiring & Using the Twig Service

Let's look at one other example. The first service that we used in our code was the Twig service.

We used it... kind of "indirectly" by saying $this->render() . In reality, that method is a

shortcut to use the Twig service behind the scenes. And that should not surprise you. Like I

said, everything that's done in Symfony is actually done by a service.

As a challenge, let's pretend that the render() function doesn't exist. Gasp! In the

homepage() controller, comment-out the render() line.

So... how can we use the Twig service directly to render a template? I don't know! We could

definitely find some documentation about this... but let's see if we can figure it out by ourselves

with the help of the debug:autowiring command:

php bin/console debug:autowiring twig

And, voilà! There is apparently a class called Twig\Environment that we can use as a "type-

hint" to get a Twig service. In our controller, add Environment and hit tab to add the use

statement on top. I'll call the argument $twigEnvironment .

src/Controller/QuestionController.php

 // ... lines 1 - 7

8

 // ... line 9

10

11

 // ... lines 12 - 14

15

16

 // ... lines 17 - 21

22

23

 // ... lines 24 - 40

41

use Twig\Environment;

class QuestionController extends AbstractController

{

 public function homepage(Environment $twigEnvironment)

 {

 //return $this->render('question/homepage.html.twig');

 }

}

Inside, add $html = $twigEnvironment-> . Once again, without reading any

documentation, thanks to the fact that we're coding responsibly and using type-hints, PhpStorm

shows us all the methods on this class. Hey! This render() method looks like it might be what

we need! Pass the same template name as before.

src/Controller/QuestionController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

 // ... lines 19 - 21

22

23

 // ... lines 24 - 40

41

When you use twig directly, instead of returning a Response object, it returns a string with the

HTML. No problem: finish with return new Response() - the one from HttpFoundation

- and pass $html .

src/Controller/QuestionController.php

 // ... lines 1 - 5

6

 // ... lines 7 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

19

20

21

22

23

 // ... lines 24 - 40

41

class QuestionController extends AbstractController

{

 public function homepage(Environment $twigEnvironment)

 {

 // fun example of using the Twig service directly!

 $html = $twigEnvironment->render('question/homepage.html.twig');

 //return $this->render('question/homepage.html.twig');

 }

}

use Symfony\Component\HttpFoundation\Response;

class QuestionController extends AbstractController

{

 public function homepage(Environment $twigEnvironment)

 {

 // fun example of using the Twig service directly!

 $html = $twigEnvironment->render('question/homepage.html.twig');

 return new Response($html);

 //return $this->render('question/homepage.html.twig');

 }

}

This is now doing the exact same thing as $this->render() . To prove it, click the homepage

link. It still works.

Now in reality, other than being a "great exercise" to understand services, there's no reason to

do this the long way. I just want you to understand that services are really the "things" doing the

work behind the scenes. And if you want to do something - like log or render a template - what

you really need is to find out which service does that work. Trust me, this is the key to unlocking

your full potential in Symfony.

Let's put the old, shorter code back, and comment out the longer example.

src/Controller/QuestionController.php

 // ... lines 1 - 9

10

11

 // ... lines 12 - 14

15

16

17

18

19

20

21

22

23

24

25

 // ... lines 26 - 42

43

Ok, you've almost made it through the first Symfony tutorial. You rock! As a reward, we're going

to finish with something fun: an introduction into a system called Webpack Encore that will allow

you to do crazy things with your CSS and JavaScript.

class QuestionController extends AbstractController

{

 public function homepage(Environment $twigEnvironment)

 {

 /*

 // fun example of using the Twig service directly!

 $html = $twigEnvironment->render('question/homepage.html.twig');

 return new Response($html);

 */

 return $this->render('question/homepage.html.twig');

 }

}

Chapter 17: Hello Webpack Encore

Our CSS and JavaScript setup is fine: we have a public/ directory with app.css and

question_show.js . Inside our templates - like base.html.twig - we include the files with

traditional link or script tags. Sure, we use this {{ asset() }} function, but it doesn't do

anything important. Symfony isn't touching our frontend assets at all.

That's fine. But if you want to get serious about frontend development - like using a frontend

framework like React or Vue - you need to take this up to the next level.

To do that, we're going to use a Node library called Webpack: which is the industry-standard

tool for managing your frontend assets. It combines and minifies your CSS and JavaScript

files... though that's just the tip of the iceberg of what it can do.

But... to get Webpack to work really well requires a lot of complex config. So, in the Symfony

world, we use a wonderful library called Webpack Encore. It's a lightweight layer on top of

Webpack that... makes it easier! And we have an entire free tutorial about it here on

SymfonyCasts.

But let's go through a crash course right now.

Installing Webpack Encore

First, make sure you have node installed:

node -v

And also yarn:

yarn -v

https://symfonycasts.com/screencast/webpack-encore

 Tip

If you don't have Node or Yarn installed - see official manuals about how to install it for your

OS. For Node, see https://nodejs.org/en/download/ and for Yarn:

https://classic.yarnpkg.com/en/docs/install . We recommend using Yarn version 1.x to follow

this tutorial.

Yarn is one of the package managers for Node... basically Composer for Node.

Before we install Encore, make sure you've committed all your changes - I already have. Then

run:

composer require "encore:^1.8"

Wait... a minute ago, I said that Encore is a Node library. So why are we installing it via

Composer? Great question! This command does not actually install Encore. Nope, it installs a

very small bundle called webpack-encore-bundle , which helps our Symfony app integrate

with Webpack Encore. The real beauty is that this bundle has a very useful recipe. Check it out,

run:

git status

Woh! Its recipe did a lot for us! One cool thing is that it modified our .gitignore file. Go open

it in your editor.

.gitignore

 // ... lines 1 - 11

12

13

14

15

16

17

Cool! We're now ignoring node_modules/ - which is Node's version of the vendor/ directory

- and a few other paths.

###> symfony/webpack-encore-bundle ###

/node_modules/

/public/build/

npm-debug.log

yarn-error.log

###

https://nodejs.org/en/download/
https://classic.yarnpkg.com/en/docs/install

The recipe also added some YAML files, which help set things up - but you don't really need to

look at them.

The most important thing the recipe did was give us these 2 files: package.json - which is

the composer.json of Node - and webpack.config.js , which is the Webpack Encore

configuration file.

Check out the package.json file. This tells Node which libraries it should download and it

already has the basic stuff we need. Most importantly: @symfony/webpack-encore .

package.json

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Installing Node Dependencies with yarn

To tell Node to install these dependencies, run:

yarn install

This command reads package.json and downloads a ton of files and directories into a new

node_modules/ directory. It might take a few minutes to download everything and build a

couple of packages.

{

 "devDependencies": {

 "@symfony/webpack-encore": "^0.28.2",

 "core-js": "^3.0.0",

 "regenerator-runtime": "^0.13.2",

 "webpack-notifier": "^1.6.0"

 },

 "license": "UNLICENSED",

 "private": true,

 "scripts": {

 "dev-server": "encore dev-server",

 "dev": "encore dev",

 "watch": "encore dev --watch",

 "build": "encore production --progress"

 }

}

When it's done, you'll see two new things. First, you have a fancy new node_modules/

directory with tons of stuff in it. And this is already being ignored from git. Second, it created a

yarn.lock file, which has the same function as composer.lock . So... you should commit

the yarn.lock file, but not worry about it otherwise.

Ok, Encore is installed! Next, let's refactor our frontend setup to use it.

Chapter 18: Webpack Encore: JavaScript
Greatness

 Tip

The recipe now adds these 2 files in a slightly different location:

assets/app.js

assets/styles/app.css

But the purpose of each file is exactly the same.

Okay: here's how this whole thing works. The recipe added a new assets/ directory with a

couple of example CSS and JS files. The app.js file basically just console.log() 's

something:

assets/js/app.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The app.css changes the background color to light gray:

/*

 * Welcome to your app's main JavaScript file!

 *

 * We recommend including the built version of this JavaScript file

 * (and its CSS file) in your base layout (base.html.twig).

 */

// any CSS you import will output into a single css file (app.css in this

case)

import '../css/app.css';

// Need jQuery? Install it with "yarn add jquery", then uncomment to

import it.

// import $ from 'jquery';

console.log('Hello Webpack Encore! Edit me in assets/js/app.js');

assets/css/app.css

1

2

3

Webpack Encore is entirely configured by one file: webpack.config.js :

body {

 background-color: lightgray;

}

webpack.config.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

var Encore = require('@symfony/webpack-encore');

// Manually configure the runtime environment if not already configured

yet by the "encore" command.

// It's useful when you use tools that rely on webpack.config.js file.

if (!Encore.isRuntimeEnvironmentConfigured()) {

 Encore.configureRuntimeEnvironment(process.env.NODE_ENV || 'dev');

}

Encore

 // directory where compiled assets will be stored

 .setOutputPath('public/build/')

 // public path used by the web server to access the output path

 .setPublicPath('/build')

 // only needed for CDN's or sub-directory deploy

 //.setManifestKeyPrefix('build/')

 /*

 * ENTRY CONFIG

 *

 * Add 1 entry for each "page" of your app

 * (including one that's included on every page - e.g. "app")

 *

 * Each entry will result in one JavaScript file (e.g. app.js)

 * and one CSS file (e.g. app.css) if your JavaScript imports CSS.

 */

 .addEntry('app', './assets/js/app.js')

 //.addEntry('page1', './assets/js/page1.js')

 //.addEntry('page2', './assets/js/page2.js')

 // When enabled, Webpack "splits" your files into smaller pieces for

greater optimization.

 .splitEntryChunks()

 // will require an extra script tag for runtime.js

 // but, you probably want this, unless you're building a single-page

app

 .enableSingleRuntimeChunk()

 /*

 * FEATURE CONFIG

 *

 * Enable & configure other features below. For a full

 * list of features, see:

 * https://symfony.com/doc/current/frontend.html#adding-more-features

 */

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

We won't talk much about this file - we'll save that for the Encore tutorial - but it's already

configured to point at the app.js and app.css files: it knows that it needs to process them.

Running Encore

To execute Encore, find your terminal and run:

yarn watch

 .cleanupOutputBeforeBuild()

 .enableBuildNotifications()

 .enableSourceMaps(!Encore.isProduction())

 // enables hashed filenames (e.g. app.abc123.css)

 .enableVersioning(Encore.isProduction())

 // enables @babel/preset-env polyfills

 .configureBabelPresetEnv((config) => {

 config.useBuiltIns = 'usage';

 config.corejs = 3;

 })

 // enables Sass/SCSS support

 //.enableSassLoader()

 // uncomment if you use TypeScript

 //.enableTypeScriptLoader()

 // uncomment to get integrity="..." attributes on your script & link

tags

 // requires WebpackEncoreBundle 1.4 or higher

 //.enableIntegrityHashes(Encore.isProduction())

 // uncomment if you're having problems with a jQuery plugin

 //.autoProvidejQuery()

 // uncomment if you use API Platform Admin (composer req api-admin)

 //.enableReactPreset()

 //.addEntry('admin', './assets/js/admin.js')

;

module.exports = Encore.getWebpackConfig();

This is a shortcut for running yarn run encore dev --watch . What does this do? It reads

those 2 files in assets/ , does some processing on them, and outputs a built version of each

inside a new public/build/ directory. Here is the "built" app.css file... and the built

app.js file. If we ran Encore in production mode - which is just a different command - it would

minimize the contents of each file.

Including the Built CSS and JS Files

There's a lot more cool stuff going on, but this is the basic idea: we code in the assets/

directory, but point to the built files in our templates.

For example, in base.html.twig , instead of pointing at the old app.css file, we want to

point at the one in the build/ directory. That's simple enough, but the WebpackEncoreBundle

has a shortcut to make it even easier: {{ encore_entry_link_tags() }} and pass this

app , because that's the name of the source files - called an "entry" in Webpack land.

templates/base.html.twig

 // ... line 1

2

3

 // ... lines 4 - 5

6

7

8

9

10

11

12

 // ... lines 13 - 33

34

At the bottom, render the script tag with {{ encore_entry_script_tags('app') }} .

<html>

 <head>

 {% block stylesheets %}

 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.c

integrity="sha384-

Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"

crossorigin="anonymous">

 <link rel="stylesheet" href="https://fonts.googleapis.com/css?

family=Spartan&display=swap">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.12.1/css/all.min.css" integrity="sha256-

mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />

 {{ encore_entry_link_tags('app') }}

 {% endblock %}

 </head>

</html>

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 12

13

 // ... lines 14 - 25

26

27

28

29

30

31

32

33

34

Let's try it! Move over and refresh. Did it work? It did! The background color is gray... and if I

bring up the console, there's the log:

“Hello Webpack Encore!”

If you look at the HTML source, there's nothing special going on: we have a normal link tag

pointing to /build/app.css .

Moving our Code into Encore

Now that this is working, let's move our CSS into the new system. Open

public/css/app.css , copy all of this, then right click and delete the file. Now open the new

app.css inside assets/ and paste.

<html>

 <body>

 {% block javascripts %}

 <script

 src="https://code.jquery.com/jquery-3.4.1.min.js"

 integrity="sha256-

CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

 crossorigin="anonymous"></script>

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

assets/css/app.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

body {

 font-family: spartan;

 color: #444;

}

.jumbotron-img {

 background: rgb(237,116,88);

 background: linear-gradient(302deg, rgba(237,116,88,1) 16%,

rgba(51,61,81,1) 97%);

 color: #fff;

}

.q-container {

 border-top-right-radius: .25rem;

 border-top-left-radius: .25rem;

 background-color: #efefee;

}

.q-container-show {

 border-top-right-radius: .25rem;

 border-top-left-radius: .25rem;

 background-color: #ED7458 ;

}

.q-container img, .q-container-show img {

 border: 2px solid #fff;

 border-radius: 50%;

}

.q-display {

 background: #fff;

 border-radius: .25rem;

}

.q-title-show {

 text-transform: uppercase;

 font-size: 1.3rem;

 color: #fff;

}

.q-title {

 text-transform: uppercase;

 color: #444;

}

.q-title:hover {

 color: #2B2B2B;

}

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

.q-title h2 {

 font-size: 1.3rem;

}

.q-display-response {

 background: #333D51;

 color: #fff;

}

.answer-link:hover .magic-wand {

 transform: rotate(20deg);

}

.vote-arrows {

 font-size: 1.5rem;

}

.vote-arrows span {

 font-size: 1rem;

}

.vote-arrows a {

 color: #444;

}

.vote-up:hover {

 color: #3D9970;

}

.vote-down:hover {

 color: #FF4136;

}

.btn-question {

 color: #FFFFFF;

 background-color: #ED7458;

 border-color: #D45B3F;

}

.btn-question:hover,

.btn-question:focus,

.btn-question:active,

.btn-question.active,

.open .dropdown-toggle.btn-question {

 color: #FFFFFF;

 background-color: #D45B3F;

 border-color: #D45B3F;

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

As soon as I do that, when I refresh... it works! Our CSS is back! The reason is that - if you

check your terminal - yarn watch is watching our files for changes. As soon as we modified

the app.css file, it re-read that file and dumped a new version into the public/build

directory. That's why we keep this running in the background.

Let's do the same thing for our custom JavaScript. Open question_show.js and, instead of

having a page-specific JavaScript file - where we only include this on our "show" page - to keep

things simple, I'm going to put this into the new app.js , which is loaded on every page.

}

.btn-question:active,

.btn-question.active,

.open .dropdown-toggle.btn-question {

 background-image: none;

}

.btn-question.disabled,

.btn-question[disabled],

fieldset[disabled] .btn-question,

.btn-question.disabled:hover,

.btn-question[disabled]:hover,

fieldset[disabled] .btn-question:hover,

.btn-question.disabled:focus,

.btn-question[disabled]:focus,

fieldset[disabled] .btn-question:focus,

.btn-question.disabled:active,

.btn-question[disabled]:active,

fieldset[disabled] .btn-question:active,

.btn-question.disabled.active,

.btn-question[disabled].active,

fieldset[disabled] .btn-question.active {

 background-color: #ED7458;

 border-color: #D45B3F;

}

.btn-question .badge {

 color: #ED7458;

 background-color: #FFFFFF;

}

footer {

 background-color: #efefee;

}

assets/js/app.js

 // ... lines 1 - 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Then go delete the public/js/ directory entirely... and public/css/ . Also open up

templates/question/show.html.twig and, at the bottom, remove the old script tag.

templates/question/show.html.twig

1

2

3

4

5

 // ... lines 6 - 57

58

With any luck, Encore already rebuilt my app.js . So if we click to view a question - I'll refresh

just to be safe - and... click the vote icons. Yes! This still works.

Installing & Importing Outside Libraries (jQuery)

Now that we're using Encore, there are some really cool things we can do. Here's one: instead

of linking to a CDN or downloading jQuery directly into our project and committing it, we can

require jQuery and install it into our node_modules/ directory... which is exactly how we're

used to doing things in PHP: we install third-party libraries into vendor/ instead of

downloading them manually.

To do that, open a new terminal tab and run:

/**

 * Simple (ugly) code to handle the comment vote up/down

 */

var $container = $('.js-vote-arrows');

$container.find('a').on('click', function(e) {

 e.preventDefault();

 var $link = $(e.currentTarget);

 $.ajax({

 url: '/comments/10/vote/'+$link.data('direction'),

 method: 'POST'

 }).then(function(data) {

 $container.find('.js-vote-total').text(data.votes);

 });

});

{% extends 'base.html.twig' %}

{% block title %}Question: {{ question }}{% endblock %}

{% block body %}

{% endblock %}

yarn add jquery --dev

This is equivalent to the composer require command: it adds jquery to the

package.json file and downloads it into node_modules/ . The --dev part is not important.

Next, inside base.html.twig , remove jQuery entirely from the layout.

templates/base.html.twig

 // ... line 1

2

 // ... lines 3 - 12

13

 // ... lines 14 - 25

26

27

28

29

30

If you go back to your browser and refresh the page now... it's totally broken:

“$ is not defined”

...coming from app.js . That makes sense: we did just download jQuery into our

node_modules/ directory - you can find a directory here called jquery - but we're not using

it yet.

How do we use it? Inside app.js , uncomment this import line: import $ from 'jquery' .

assets/js/app.js

 // ... lines 1 - 9

10

11

12

13

 // ... lines 14 - 29

This "loads" the jquery package we installed and assigns it to a $ variable. All these $

variables below are referencing the value we imported.

<html>

 <body>

 {% block javascripts %}

 {{ encore_entry_script_tags('app') }}

 {% endblock %}

 </body>

</html>

// Need jQuery? Install it with "yarn add jquery", then uncomment to

import it.

import $ from 'jquery';

Here's the really cool part: without making any other changes, when we refresh, it works!

Webpack noticed that we're importing jquery and automatically packaged it inside of the built

app.js file. We import the stuff we need, and Webpack takes care of... packaging it all

together.

 Tip

Actually, Webpack splits the final files into multiple for efficiency. jQuery actually lives inside

a different file in public/build/, though that doesn't matter!

Importing the Bootstrap CSS

We can do the same thing for the Bootstrap CSS. On the top of base.html.twig , delete the

link tag for Bootstrap:

templates/base.html.twig

 // ... line 1

2

3

 // ... lines 4 - 5

6

7

8

9

10

11

 // ... lines 12 - 28

29

No surprise, when we refresh, our site looks terrible.

To fix it, find your terminal and run:

yarn add bootstrap --dev

<html>

 <head>

 {% block stylesheets %}

 <link rel="stylesheet" href="https://fonts.googleapis.com/css?

family=Spartan&display=swap">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-

awesome/5.12.1/css/all.min.css" integrity="sha256-

mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />

 {{ encore_entry_link_tags('app') }}

 {% endblock %}

 </head>

</html>

This downloads the bootstrap package into node_modules/ . This package contains both

JavaScript and CSS. We want to bring in the CSS.

To do that, open app.css and, at the top, use the good-old-fashioned @import syntax. Inside

double quotes, say ~bootstrap :

assets/css/app.css

1

2

 // ... lines 3 - 129

In CSS, this ~ is a special way to say that you want to load the CSS from a bootstrap

package inside node_modules/ .

Move over, refresh and... we are back! Webpack saw this import, grabbed the CSS from the

bootstrap package, and included it in the final app.css file. How cool is that?

What Else can Encore Do?

This is just the start of what Webpack Encore can do. It can also minimize your files for

production, supports Sass or LESS compiling, comes with React and Vue.js support, has

automatic filename versioning and more. To go further, check out our free Webpack Encore

tutorial.

And... that's it for this tutorial! Congratulations for sticking with me to the end! You already

understand the most important parts of Symfony. In the next tutorial, we're going to unlock even

more of your Symfony potential by uncovering the secrets of services. You'll be unstoppable.

As always, if you have questions, problems or have a really funny story - especially if it involves

your cat - we would love to hear from you in the comments.

Alright friends - seeya next time!

@import "~bootstrap";

https://symfonycasts.com/screencast/webpack-encore
https://symfonycasts.com/screencast/webpack-encore

With <3 from SymfonyCasts

