
Webpack Encore: A Party for
your Assets

Chapter 1: Installing Encore

Hiya guys! And welcome to our tutorial on Webpack Encore! I have to admit, this tutorial is near

and dear to my heart, because I helped write Webpack Encore. But also because I think you're

going to love working with it and I know that it's going to drastically improve the way you write

JavaScript.

Basically, Encore is a wrapper around Webpack... because honestly, Webpack - while amazing

- is a pain to setup. And what does Webpack do? We'll get to that.

Setting up the Project

And when we do.... you're definitely going to want to code along with me. Because, we're going

to code JavaScript... dramatic pause... correctly!

Download the course code from this page. After you unzip it, you'll find a start/ directory that

has the same code you see here. Follow the README.md file to get setup details and, of

course, a Haiku about Webpack.

The last step will be to find a terminal, move into the project, and run:

php bin/console server:run

to start the built-in web server. Find your most favorite browser and go to: http://localhost:8000.

Aw yea, it's Lift Stuff! Our startup for keeping track of all of the stuff... we lift! Login with

username ron_furgandy password pumpup .

This is a two-page app: the login page and this incredible page: where we can record that -

while programming today - we lifted our cat 10 times. I love exercise! Everything on this page

works via AJAX and JavaScript... but the JavaScript is pretty traditional. If you watched our

Webpack tutorial, we've actually reset this project back to before we introduced Webpack. Yep,

in the public/ directory, there are some normal CSS and JavaScript files. Nothing special.

http://localhost:8000/

Oh, and this is a Symfony 4 application... but that doesn't matter much. For you Symfony users

out there, the only special setup I've done is to install the Asset component so that we can use

the Twig asset() function:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 108

109

On a fresh Symfony 4 project, run:

composer require asset

to get it.

The Magical require Statement

Ok... so what's all the fuss about with Webpack anyways? Well, the JavaScript file that runs the

main page is called RepLogApp.js . Look inside: it holds two classes:

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="{{ asset('assets/css/main.css') }}" rel="stylesheet"

/>

 {% endblock %}

</head>

</html>

public/assets/js/RepLogApp.js

1

2

3

4

5

6

7

 // ... lines 8 - 192

193

194

195

196

197

198

 // ... lines 199 - 226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

If you haven't see the class syntax in JavaScript, go back and watch episode 2 of our

JavaScript series. It's cool stuff.

Anyways, we have a class RepLogApp and then.... way down below, we have Helper :

'use strict';

(function(window, $, Routing, swal) {

 let HelperInstances = new WeakMap();

 class RepLogApp {

 }

 /**

 * A "private" object

 */

 class Helper {

 }

 const rowTemplate = (repLog) => `

<tr data-weight="${repLog.totalWeightLifted}">

 <td>${repLog.itemLabel}</td>

 <td>${repLog.reps}</td>

 <td>${repLog.totalWeightLifted}</td>

 <td>

 <a href="#"

 class="js-delete-rep-log"

 data-url="${repLog.links._self}"

 >

 </td>

</tr>

`;

 window.RepLogApp = RepLogApp;

})(window, jQuery, Routing, swal);

https://knpuniversity.com/screencast/JavaScript-es6

public/assets/js/RepLogApp.js

1

2

3

 // ... lines 4 - 6

7

 // ... lines 8 - 192

193

194

195

196

197

198

 // ... lines 199 - 226

227

 // ... lines 228 - 245

246

In PHP, we would never do this: we would organize each class into a different file. But in

JavaScript, that's a pain! Because, if I move this Helper code to another file, then in my

template, I need to remember to include a second script tag:

templates/lift/index.html.twig

 // ... lines 1 - 53

54

 // ... lines 55 - 57

58

 // ... lines 59 - 65

66

This is why we can't have nice things.

But... what if we could require files in JavaScript... just like we can in PHP? Um... let's try it!

Copy the Helper class, remove it, then - in the js/ directory, add a new file:

RepLogHelper.js . Paste the class here - I'll remove the comment on top:

'use strict';

(function(window, $, Routing, swal) {

 class RepLogApp {

 }

 /**

 * A "private" object

 */

 class Helper {

 }

})(window, jQuery, Routing, swal);

{% block javascripts %}

 <script src="{{ asset('assets/js/RepLogApp.js') }}"></script>

{% endblock %}

public/assets/js/RepLogHelper.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

 // ... lines 33 - 35

You see, in Node - which is server-side JavaScript, they have this idea of modules. Each file is a

"module"... which doesn't mean much except that each file can export a value from itself. Then,

other files, um, modules, can require that file to get that value.

In RepLogHelper.js , we really to make this Helper class available to other files. To export

it, at the bottom, add module.exports = Helper :

'use strict';

class Helper {

 constructor(repLogs) {

 this.repLogs = repLogs;

 }

 calculateTotalWeight() {

 return Helper._calculateWeights(

 this.repLogs

);

 }

 getTotalWeightString(maxWeight = 500) {

 let weight = this.calculateTotalWeight();

 if (weight > maxWeight) {

 weight = maxWeight + '+';

 }

 return weight + ' lbs';

 }

 static _calculateWeights(repLogs) {

 let totalWeight = 0;

 for (let repLog of repLogs) {

 totalWeight += repLog.totalWeightLifted;

 }

 return totalWeight;

 }

}

public/assets/js/RepLogHelper.js

1

2

3

 // ... lines 4 - 31

32

33

34

Now, in RepLogApp , at the top, add const Helper = require('./RepLogHelper'); :

public/assets/js/RepLogApp.js

1

2

3

4

5

 // ... lines 6 - 213

214

I want to highlight two things. First, you do not need the .js at the end of the filename. You can

add it... but you don't need it - it's assumed. Second, the ./ is important: this tells the

require function to look relative to this file. Later, we'll find out what it means to not start with

./ .

So here's the reality: if we ran this code on the server via Node... it would work! Yea! This

require() thing is real! But... does it work in a browser?

Let's find out! Move over, open the debugging console and... refresh! Oh man!

“require is not defined”

Booo! So... the require() function is not something that works in a browser... in any browser.

And, the thing is, it can't work. PHP and Node are server-side languages, so Node can instantly

read this file from the filesystem. But in a browser, in order to get this RepLogHelper.js file, it

would need to make an AJAX request... and of course that's far from instant.

The point is: the require() function just doesn't make sense in a browser. And this is the

problem that Webpack solves. Webpack is a command that can read this file, parse through all

of the require calls and create one final JavaScript file packed with all the code we need.

'use strict';

class Helper {

}

module.exports = Helper;

'use strict';

const Helper = require('./RepLogHelper');

(function(window, $, Routing, swal) {

})(window, jQuery, Routing, swal);

But, we're not going to install Webpack directly. Google for "Webpack Encore" to find its

documentation on Symfony.com.

Installing Webpack Encore

Click into the Installation page and copy the yarn add line. And, some background: Webpack

is a Node executable, so you'll need to make sure it's installed. And second... Node has two

package managers: yarn and npm. You can use either - I'll use Yarn. So make sure you have

that installed too.

Then, find your terminal, open a fresh new tab, lift your cat, and then run:

yarn add @symfony/webpack-encore --dev

 Tip

Encore version 0.21.0 contains a few cool changes. Don't worry, we'll tell you in this tutorial

where anything is now different.

If you're a Symfony user, there is also a composer line you can use. Actually, all it really does is

install a Flex recipe that creates a few files for you to get you started faster. We'll do everything

manually so that we can see how it works.

Move back and... it's done! If you're new to Yarn, this did two things. First, it created a

package.json file:

package.json

1

2

3

4

5

That's just like composer.json for Node - and also a yarn.lock file - that's like

composer.lock . Second, it downloaded everything into a node_modules/ directory: that's

the vendor/ directory for Node.

{

 "devDependencies": {

 "@symfony/webpack-encore": "^0.19.0"

 }

}

https://symfony.com/doc/current/frontend.html

And just like in PHP, we do not want to commit all those vendor files. Open your .gitignore

file and ignore /node_modules/* :

.gitignore

1

 // ... lines 2 - 18

Brilliant! Encore is installed. Let's do some webpacking!

/node_modules/*

Chapter 2: Our First Encore

Create a new file: webpack.config.js . Here's how Webpack works: we create a config file

that tells it which file to load, where to save the final file, and a few other things. Then... it does

the rest!

But... Webpack's configuration is complex. A fully-featured setup will probably be a few hundred

lines of complicate config! Heck, our Webpack tutorial was over 3 hours long! Very simply:

Encore is a tool that helps generate that complex config.

Setting up webpack.config.js

Click on the documentation to find the "First Example". Hey! A webpack.config.js file to get

us started! Copy that! Then, paste it in our file. But, I'm going to simplify and delete a few things:

we'll add this stuff back later. Just keep setOutputPath() , setPublicPath() and

addEntry() :

webpack.config.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

And hey, check out that first line! Since this file will be executed by Node, we can require stuff!

This imports the Encore object:

var Encore = require('@symfony/webpack-encore');

Encore

 // the project directory where all compiled assets will be stored

 .setOutputPath('public/build/')

 // the public path used by the web server to access the previous

directory

 .setPublicPath('/build')

 .addEntry('rep_log', './public/assets/js/RepLogApp.js')

;

// export the final configuration

module.exports = Encore.getWebpackConfig();

webpack.config.js

1

 // ... lines 2 - 15

Then, at the bottom, we ask Encore to give us the final config, and we export it:

webpack.config.js

 // ... lines 1 - 12

13

14

There are only three things we need to tell Webpack: the directory where we want to save the

final files - public/build - the public path to that directory - so /build since public/ is

the document root - and an "entry":

webpack.config.js

 // ... lines 1 - 2

3

4

5

6

7

8

9

10

11

 // ... lines 12 - 15

Point this to our JavaScript file: ./public/assets/js/RepLogApp.js . Change the first

argument to rep_log :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 15

This tells Webpack to work its magic on RepLogApp.js . The first argument will be the name of

the final file, .js - so rep_log.js .

var Encore = require('@symfony/webpack-encore');

// export the final configuration

module.exports = Encore.getWebpackConfig();

Encore

 // the project directory where all compiled assets will be stored

 .setOutputPath('public/build/')

 // the public path used by the web server to access the previous

directory

 .setPublicPath('/build')

 .addEntry('rep_log', './public/assets/js/RepLogApp.js')

;

Encore

 .addEntry('rep_log', './public/assets/js/RepLogApp.js')

;

Running Encore

And... that's it! Find your terminal. Encore has its own executable. To use it, run:

 Tip

Wait! Before running encore, first delete the .babelrc file (if you have one). This is left-

over from the previous tutorial and is not needed: Encore handles it for us.

./node_modules/.bin/encore dev

The "dev" part tells Encore to create a "development" build. And... cool! Two files written to

public/build . Let's check them out! Alright! There's rep_log.js . We'll talk about

manifest.json later.

Cool! Let's point our script tag at the new file. Open templates/lift/index.html.twig .

This is the template that runs our main page. At the bottom, change the path to

build/rep_log.js :

templates/lift/index.html.twig

1

 // ... lines 2 - 53

54

 // ... lines 55 - 57

58

 // ... lines 59 - 65

66

If you're not a Symfony user, don't worry, the asset() function isn't doing anything special. Ok,

let's try it! Find your browser and, refresh! Woo! It works! People, this is amazing! We can finally

organize JavaScript into multiple files and not worry about "forgetting" to add all the script tags

we need. The require function is a game-changer!

If you look at the compiled rep_log.js file, you can see a bunch of Webpack code at the top,

which helps things work internally - and... below, our code! It's not minimized because this is a

development build. We'll talk about production builds later.

{% extends 'base.html.twig' %}

{% block javascripts %}

 <script src="{{ asset('build/rep_log.js') }}"></script>

{% endblock %}

Making PhpStorm Happy

If you're using PhpStorm like me, there are a few things we can do to make our life much more

awesome. Open Preferences and search for ECMAScript. Under "Languages & Frameworks" ->

"JavaScript", make sure that ECMAScript 6 is selected.

Then, search for "Node" and find the "Node.js and NPM" section. Click to "Enable" the Node.js

Core library.

And finally, if you're using Symfony, search for Symfony. If you don't see a Symfony section, you

should totally download the Symfony plugin - we have some details about this in a different

screencast. Make sure it's enabled, and - most importantly - change the web directory to

public . This will give auto-completion on the asset function.

Watching for Changes

Back to Encore! There's one big bummer when introducing a "build" system for JavaScript like

we just did: each time you change a file, you will need to re-run Encore! Lame! That's why

Encore has a fancy "watch" option. Run:

./node_modules/.bin/encore dev --watch

This will build, but now it's watching for changes! Let's just add a space here and save. Yes!

Encore already re-built the files. Stop this whenever you want with Ctrl+C .

Oh, and since this command is long, there's a shortcut:

yarn run encore dev

or, better... use the --watch flag:

yarn run encore dev --watch

https://knpuniversity.com/screencast/symfony/micro-app-phpstorm
https://knpuniversity.com/screencast/symfony/micro-app-phpstorm

Build Notifications!

Great! But... sometimes... we're going to make mistakes. Yes, I know, it's hard to imagine. Let's

make a syntax error. Back at the terminal, woh! The build failed! But if you weren't watching the

terminal closely, you might not realize this happened!

No problem! Let's enable a build notification system! In webpack.config.js , just add

enableBuildNotifications() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 11

12

13

 // ... lines 14 - 17

The "watch" functionality has one weakness: whenever you update webpack.config.js ,

you'll need to restart Encore before it sees those changes. So... stop it and run Encore again:

yarn run encore dev --watch

Bah, error! Scroll up! Check this out, it says:

“Install webpack-notifier to use enableBuildNotifications() ”

And then it tells us to run a command. Cool! Encore has a ton of features... but to stay light, it

doesn't ship with the all of the dependencies for these optional features. But, it's no problem: if

you need to install something, Encore will tell you. Copy that command and run:

yarn add webpack-notifier --dev

Run encore again:

yarn run encore dev --watch

Encore

 .enableBuildNotifications()

;

It works! And cool! A desktop notification. Now, make a mistake! Yes! An obvious build error. Fix

it and... build successful!

Ok, we've got a pretty sweet system already. But Webpack is going to let us do so much more.

Chapter 3: Require Outside Libraries

When you use Webpack, the hardest thing is that you need to start thinking about your

JavaScript differently. You need to stop thinking about global variables, and start thinking about

how you can code correctly. It's not as easy as it sounds: we've been using global variables in

JavaScript... well... forever!

For example, in RepLogApp.js , we created this self-executing function to give our code a little

bit of isolation:

public/assets/js/RepLogApp.js

 // ... lines 1 - 4

5

 // ... lines 6 - 213

214

That part isn't too important. But at the bottom, we are relying on there to be a global jQuery

variable. It just must exist, or else everything will explode! On top, this becomes a $ variable in

the function.

Open the base layout file - base.html.twig . The only reason our code works is that, at the

bottom, yep! We have a script tag for jQuery, which adds a global jQuery variable:

templates/base.html.twig

 // ... lines 1 - 98

99

100

 // ... lines 101 - 105

106

 // ... lines 107 - 110

And this is the process we've used for years: add a script tag for a JS library, then reference its

global variable everywhere else.

I hate this! In RepLogApp.js , I just have to hope that jQuery was included correctly. That's

madness, and it needs to stop. So, from now on, we have a new philosophy: if we need a

(function(window, $, Routing, swal) {

})(window, jQuery, Routing, swal);

{% block javascripts %}

 <script src="https://code.jquery.com/jquery-3.1.1.min.js"

integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8="

crossorigin="anonymous"></script>

{% endblock %}

variable in a file - like $ - then we need to require it in the same way that we are requiring

Helper .

The only difference is that jQuery is a third-party library. Well... in PHP, we would use Composer

to install third-party libraries. And... yea! In JavaScript, we can use Yarn to do the same thing!

Installing jQuery via Yarn

Check this out: open a third terminal tab - we're getting greedy! Then run:

yarn add jquery --dev

Yep! We can use yarn to download front-end libraries! Oh, and you can search for package

names on npmjs.com or npms.io .

This downloads jquery into the node_modules/ directory and adds it to package.json :

package.json

1

2

 // ... line 3

4

 // ... line 5

6

7

Requiring jQuery

So... how do we require it? Oh, it's awesome: const $ = require('jquery') :

public/assets/js/RepLogApp.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 216

That's it! When a require path does not start with a . , Webpack knows to look for a package in

node_modules/ with that name.

{

 "devDependencies": {

 "jquery": "^3.3.1",

 }

}

const Helper = require('./RepLogHelper');

const $ = require('jquery');

And now that we are properly importing the $ variable - yay us - remove $ and jQuery from

the self-executing function:

public/assets/js/RepLogApp.js

 // ... lines 1 - 3

4

5

6

 // ... lines 7 - 214

215

Yep, when we use the $ variable below, it is no longer dependent on any global jQuery

variable! Responsible coding for the win!

But... does it work? Try it! Go back to our site and refresh! It does! That's because, back on the

terminal, if you run:

ls -la public/build

... yep! Our rep_log.js file now has jQuery inside of it - you know because it's now 300kb!

Don't worry, we'll talk about optimizations later.

But the point is this: all we need to do is require the libraries we need, and Webpack takes care

of the rest!

Installing & Using SweetAlert2

Let's require one more outside package. Search for "swal". We're using a really cool library

called SweetAlert to bring up the delete dialog. But... the only reason this works is that, in the

template, we're including a script tag for it:

const $ = require('jquery');

(function(window, Routing, swal) {

})(window, Routing, swal);

templates/lift/index.html.twig

 // ... lines 1 - 47

48

 // ... lines 49 - 50

51

52

 // ... line 53

54

 // ... lines 55 - 56

57

 // ... lines 58 - 65

66

Boo! Let's refactor this to require that library properly.

If you search for this package, you'll find out that it's called sweetalert2 . Let's install it:

yarn add sweetalert2@^7.11.0 --dev

This time, delete the script tag entirely. We can't remove the jQuery script tag yet because we're

still using the global variable in a few places. But, we'll fix that soon.

Then, in RepLogApp.js , remove the argument from the self-executing function: that global

variable doesn't even exist anymore!

public/assets/js/RepLogApp.js

 // ... lines 1 - 6

7

 // ... lines 8 - 215

216

To prove it, refresh! Awesome!

“swal is not defined”

To get it back, add const swal = require('sweetalert2'); :

{% block stylesheets %}

 <link rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/sweetalert2@7.11.0/dist/sweetalert2.min.c

/>

{% endblock %}

{% block javascripts %}

 <script

src="https://cdn.jsdelivr.net/npm/sweetalert2@7.11.0/dist/sweetalert2.all.mi

</script>

{% endblock %}

(function(window, Routing) {

})(window, Routing);

public/assets/js/RepLogApp.js

 // ... lines 1 - 4

5

6

7

 // ... lines 8 - 215

216

As soon as we save this, Webpack recompiles, we refresh and... it works! Yes! We can use any

outside library by running one command and adding one require line.

Let's use our new unstoppable skills to refactor our code into re-usable components.

const swal = require('sweetalert2');

(function(window, Routing) {

})(window, Routing);

Chapter 4: Component Organization

With our new-found super-power to require files, we can really start to clean things up! First,

remove the self-executing function that's around everything:

public/assets/js/RepLogApp.js

 // ... lines 1 - 6

7

8

9

 // ... lines 10 - 194

195

196

197

 // ... lines 198 - 210

211

212

213

We originally added this because it gave our code a little bit of isolation. It helped us to, for

example, avoid accidentally overriding global variables, but... now that RepLogApp is being

processed by Webpack, it is itself a module! And Webpack automatically wraps it - behind the

scenes - so that it's isolated. Basically, we don't need to worry about silly things like self-

executing functions.

Creating a Skinny "entry" File

Next, look in the template: index.html.twig . We include the rep_log.js file... but we also

have a little bit of JavaScript that is responsible for using that object and initializing it:

let HelperInstances = new WeakMap();

class RepLogApp {

}

const rowTemplate = (repLog) => `

`;

window.RepLogApp = RepLogApp;

templates/lift/index.html.twig

 // ... lines 1 - 53

54

 // ... lines 55 - 56

57

58

59

60

61

62

63

64

65

This is.... kind of a bummer: it relies on the RepLogApp variable to be global... and that only

works because, at the bottom, we're purposely creating a global variable with

window.RepLogApp = RepLogApp :

public/assets/js/RepLogApp.js

 // ... lines 1 - 212

213

Also, to fully Webpackify our app, we will eventually want to remove all JavaScript from our

templates. Yep, you'll just include the one JS file and... that's it!

Skinny Entries

And this brings us to an important point about organization. Usually, the entry file - so the file

that we list in webpack.config.js :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 17

Should contain a small amount of logic that calls out to other modules. It's kind of like a

controller in Symfony: it's supposed to have just a few lines of code that call out to other parts of

our app.

{% block javascripts %}

 <script src="{{ asset('build/rep_log.js') }}"></script>

 <script>

 $(document).ready(function() {

 var $wrapper = $('.js-rep-log-table');

 var repLogApp = new RepLogApp($wrapper);

 });

 </script>

{% endblock %}

window.RepLogApp = RepLogApp;

Encore

 .addEntry('rep_log', './public/assets/js/RepLogApp.js')

;

Actually, the code in index.html.twig is a pretty good example of what I'd expect in an

entry file:

templates/lift/index.html.twig

 // ... lines 1 - 53

54

 // ... lines 55 - 58

59

60

61

62

63

64

65

Let me show you what I mean: in the js/ directory, create a new file: called rep_log.js .

Next, open webpack.config.js : let's use this as the entry file instead:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

 // ... lines 11 - 12

13

 // ... lines 14 - 17

And since I just made a change, find your terminal and restart Encore:

yarn run encore dev --watch

Copy the code from index.html.twig , remove it, and paste it here:

public/assets/js/rep_log.js

 // ... lines 1 - 5

6

7

8

9

Perfect!

{% block javascripts %}

 <script>

 $(document).ready(function() {

 var $wrapper = $('.js-rep-log-table');

 var repLogApp = new RepLogApp($wrapper);

 });

 </script>

{% endblock %}

Encore

 .addEntry('rep_log', './public/assets/js/rep_log.js')

;

$(document).ready(function() {

 var $wrapper = $('.js-rep-log-table');

 var repLogApp = new RepLogApp($wrapper);

});

And now that we are responsible JavaScript developers... finally... we need to require any

dependencies. Oh, but first, add 'use strict'; on top - that's optional, but I like it:

public/assets/js/rep_log.js

1

 // ... lines 2 - 5

6

7

8

9

Now add const $ = require('jquery') and, to get RepLogApp ,

const RepLogApp = require('./RepLogApp'); :

public/assets/js/rep_log.js

1

2

3

4

5

6

7

8

9

I love it! Does it work? Move of it and... refresh! Bah!

“RepLogApp is not a constructor”

Ooof. This is a technical way of saying:

“Hey! You're using RepLogApp like a class... but it's not!”

Open RepLogApp.js , and scroll to the bottom:

'use strict';

$(document).ready(function() {

 var $wrapper = $('.js-rep-log-table');

 var repLogApp = new RepLogApp($wrapper);

});

'use strict';

const $ = require('jquery');

const RepLogApp = require('./RepLogApp');

$(document).ready(function() {

 var $wrapper = $('.js-rep-log-table');

 var repLogApp = new RepLogApp($wrapper);

});

public/assets/js/RepLogApp.js

 // ... lines 1 - 8

9

 // ... lines 10 - 194

195

196

197

 // ... lines 198 - 210

211

212

213

Aha! We forgot to export a value from this module. Replace the global variable with

module.exports = RepLogApp :

public/assets/js/RepLogApp.js

 // ... lines 1 - 8

9

 // ... lines 10 - 194

195

196

197

 // ... lines 198 - 210

211

212

213

Try it again! It works!

You can start to see the pattern: create a small entry file and organize everything else into

reusable classes or functions.

Moving into a Components Directory

Let's take this a step further and organize into directories. Create a new directory in js/ called

Components/ . Let's move our re-usable stuff here: RepLogApp and RepLogHelper .

Build failure! Of course! In rep_log.js , update the path: ./Components/RepLogApp :

public/assets/js/rep_log.js

 // ... lines 1 - 3

4

 // ... lines 5 - 10

class RepLogApp {

}

const rowTemplate = (repLog) => `

`;

window.RepLogApp = RepLogApp;

class RepLogApp {

}

const rowTemplate = (repLog) => `

`;

module.exports = RepLogApp;

const RepLogApp = require('./Components/RepLogApp');

Build successful! Make sure it still works... it does!

Next! This is great! But can Encore handle apps that are not single-page apps? Like, what if I

need a different JavaScript file for my login page? Encore has you covered.

Chapter 5: Multiple Pages / Entries

This is all really nice... but, so far... it kinda looks like Webpack only works for single-page apps!

I mean, if this were the only page in our app, we could write all of our JavaScript in the one

entry file, require what we need and... be done!

But even our small app has another page: /login . And this page has its own custom

JavaScript.... which right now, is done in this boring, old, non-Webpack-ified login.js file:

public/assets/js/login.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

So... how can we also process this file through Webpack? We could require it from

rep_log.js , but that's wasteful! We really only need this code on the login page.

'use strict';

(function(window, $) {

 $(document).ready(function() {

 $('.js-recommended-login').on('click', '.js-show-login',

function(e) {

 e.preventDefault();

 $('.js-recommended-login-details').toggle();

 });

 $('.js-login-field-username').on('keydown', function(e) {

 const $usernameInput = $(e.currentTarget);

 // remove any existing warnings

 $('.login-long-username-warning').remove();

 if ($usernameInput.val().length >= 20) {

 const $warning = $('<div class="login-long-username-

warning">This is a really long username - are you sure that is right?

</div>');

 $usernameInput.before($warning);

 }

 });

 });

})(window, jQuery);

Multiple Entries

The answer is... so simple: add a second entry called login that will load the

assets/js/login.js file:

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

 // ... lines 12 - 13

14

 // ... lines 15 - 18

I want you to think of each entry as a separate page on your site. Or, you can think of each

entry as a separate JavaScript application that runs on your site. Like, we have our main "rep

log" application and also our "login" application.

Because we just changed the webpack config, go back and restart Encore:

yarn run encore dev --watch

Webpack-Sponsored Cleanup

And now we can improve things! First, remove that self-executing function:

Encore

 .addEntry('rep_log', './public/assets/js/rep_log.js')

 .addEntry('login', './public/assets/js/login.js')

;

public/assets/js/login.js

1

 // ... lines 2 - 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Then, more importantly, require the dependencies we need: in this case jQuery with

const $ = require('jquery') :

'use strict';

$(document).ready(function() {

 $('.js-recommended-login').on('click', '.js-show-login', function(e) {

 e.preventDefault();

 $('.js-recommended-login-details').toggle();

 });

 $('.js-login-field-username').on('keydown', function(e) {

 const $usernameInput = $(e.currentTarget);

 // remove any existing warnings

 $('.login-long-username-warning').remove();

 if ($usernameInput.val().length >= 20) {

 const $warning = $('<div class="login-long-username-

warning">This is a really long username - are you sure that is right?

</div>');

 $usernameInput.before($warning);

 }

 });

});

public/assets/js/login.js

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

That's it! Go back and... refresh! Bah:

“require is not defined”

Boo! My bad - I forgot to use the new built file. Open

templates/bundles/FOSUserBundle/Security/login.html.twig . Point the script

tag to build/login.js :

templates/bundles/FOSUserBundle/Security/login.html.twig

 // ... lines 1 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 72

And now... it works! When I type a really long username, this message appears thanks to that

JavaScript.

'use strict';

const $ = require('jquery');

$(document).ready(function() {

 $('.js-recommended-login').on('click', '.js-show-login', function(e) {

 e.preventDefault();

 $('.js-recommended-login-details').toggle();

 });

 $('.js-login-field-username').on('keydown', function(e) {

 const $usernameInput = $(e.currentTarget);

 // remove any existing warnings

 $('.login-long-username-warning').remove();

 if ($usernameInput.val().length >= 20) {

 const $warning = $('<div class="login-long-username-

warning">This is a really long username - are you sure that is right?

</div>');

 $usernameInput.before($warning);

 }

 });

});

{% block javascripts %}

 <script src="{{ asset('build/login.js') }}"></script>

{% endblock %}

The "layout" Entry

But... there's one last problem. Open the base layout file: base.html.twig . Yep, we also

include one JavaScript file on every page:

templates/base.html.twig

 // ... lines 1 - 98

99

 // ... lines 100 - 104

105

106

 // ... lines 107 - 110

It doesn't do much... just adds a tooltip when you hover over your username:

public/assets/js/layout.js

1

2

3

4

5

6

7

So... how do we handle this? How can we Webpackify this file? I mean, the layout is not its own

page... so... can it be its own entry? The answer is... yes! Add another entry called layout and

point it to assets/js/layout.js :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 19

Here's the deal: usually you will include exactly one script tag for a built JavaScript file on each

page - like rep_log.js or login.js . But, if you have some JavaScript that should be

included on every page, you can think of that JavaScript as its own, mini JS application. In that

case, you'll have two built files per page: your layout JavaScript and your page-specific

JavaScript... if you have any for that page.

{% block javascripts %}

 <script src="{{ asset('assets/js/layout.js') }}"></script>

{% endblock %}

'use strict';

(function(window, $) {

 $(document).ready(function() {

 $('[data-toggle="tooltip"]').tooltip();

 });

})(window, jQuery);

Encore

 .addEntry('layout', './public/assets/js/layout.js')

;

Go back and restart Webpack so it reads the new config.

yarn run encore dev --watch

But... let's not refactor this file yet: we'll do that next. In base.html.twig , use the new file:

build/layout.js :

templates/base.html.twig

 // ... lines 1 - 98

99

 // ... lines 100 - 104

105

106

 // ... lines 107 - 110

Boom! Try it! Refresh the page! Yes! It still works. Next, let's refactor layout.js to remove the

self-executing function and require its dependencies. But this time... there's a surprise!

{% block javascripts %}

 <script src="{{ asset('build/layout.js') }}"></script>

{% endblock %}

Chapter 6: jQuery Plugins / Bootstrap

Now that Webpack is handling layout.js , let's simplify it! Remove the self-executing

function. And, of course, add const $ = require('jquery') :

public/assets/js/layout.js

1

2

3

4

5

6

7

Perfect, right? Well... we're in for a surprise! Go back to the main page and... refresh! Bah!

“tooltip is not a function”

Uh oh! The tooltip function comes from Bootstrap... and if you look in our base layout, yea!

We are including jQuery and then Bootstrap:

templates/base.html.twig

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 98

99

100

101

 // ... lines 102 - 105

106

107

108

109

'use strict';

const $ = require('jquery');

$(document).ready(function() {

 $('[data-toggle="tooltip"]').tooltip();

});

<!DOCTYPE html>

<html lang="en">

<body>

{% block javascripts %}

 <script src="https://code.jquery.com/jquery-3.1.1.min.js"

integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8="

crossorigin="anonymous"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"

integrity="sha384-

Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"

crossorigin="anonymous"></script>

{% endblock %}

</body>

</html>

Which should add this function to jQuery!

Trouble with jQuery Plugins

But be careful: this is where Webpack can get tricky! Internally, the Bootstrap JavaScript

expects there to be a global jQuery variable that it can add the tooltip() function to. And

there is a global jQuery variable! It's this jQuery that's included in the layout. So, Bootstrap adds

.tooltip() to that jQuery object.

But, in layout.js , when we require('jquery') :

public/assets/js/layout.js

 // ... lines 1 - 2

3

 // ... lines 4 - 8

This imports an entirely different jQuery object... and this one does not have the tooltip function!

To say this in a different way, if you look at just this file, we are not requiring bootstrap... so it

should be no surprise that bootstrap hasn't been able to add its tooltip() function! What's

the fix? Require Bootstrap!

Find your open terminal and run:

yarn add bootstrap@3 --dev

Bootstrap 4 just came out, but our app is built on Bootstrap 3. Now that it's installed, go back

and add: require('bootstrap') :

public/assets/js/layout.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

And... that's it! Well, there is one strange thing... and it's really common for jQuery plugins: when

you require bootstrap, it doesn't return anything. Nope, its whole job is to modify jQuery... not

return something.

const $ = require('jquery');

const $ = require('jquery');

require('bootstrap');

Now that it's fixed, go back and... refresh! What! The same error!!! This is where things get

really interesting.

At this point, we're no longer using the global jQuery variable or Bootstrap JavaScript anywhere:

all of our code now uses proper require statements. To celebrate, remove the two script tags

from the base layout:

templates/base.html.twig

1

2

 // ... lines 3 - 19

20

 // ... lines 21 - 98

99

100

101

 // ... lines 102 - 105

106

107

108

109

And now... refresh!

Fascinating!

“jQuery is not defined”

And it's coming from inside of Bootstrap!

Ah, ha! When we require bootstrap , internally in that file, it looks for a global variable called

jQuery and then modifies it. But when you require jquery , it does not create a global

variable: it just returns a value. And now that there is no global jQuery variable available, it

fails! This is a really common situation for jQuery plugins... and there's a great fix. Actually, there

are two ways to fix it... but only one good one.

The ugly fix is to say window.jQuery = $:

<!DOCTYPE html>

<html lang="en">

<body>

{% block javascripts %}

 <script src="https://code.jquery.com/jquery-3.1.1.min.js"

integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8="

crossorigin="anonymous"></script>

 <script

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"

integrity="sha384-

Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa"

crossorigin="anonymous"></script>

{% endblock %}

</body>

</html>

public/assets/js/layout.js

 // ... lines 1 - 2

3

4

5

 // ... lines 6 - 10

Try it! Go back and refresh! All better. Yep, we just made a global variable... so that when we

require bootstrap , it uses it. But... come on! We're trying to remove global variables from our

code - not re-add them!

public/assets/js/layout.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 9

So here's the better solution: go to webpack.config.js and add autoProvidejQuery() :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 14

15

16

17

 // ... lines 18 - 21

That's it. Find your terminal and restart Webpack:

yarn run encore dev --watch

And... refresh! Yes! It works! But... what the heck just happened? You've just experienced a

crazy super power of Webpack. Thanks to autoProvidejQuery() , whenever Webpack finds

a module that references an uninitialized global jQuery variable - yep, Webpack is smart

enough to know this:

// node_modules/bootstrap/.../bootstrap.js

function ($) {

const $ = require('jquery');

window.jQuery = $;

require('bootstrap');

const $ = require('jquery');

require('bootstrap');

Encore

 // fixes modules that expect jQuery to be global

 .autoProvidejQuery()

;

// ...

} (jQuery)

It rewrites that code to require('jquery') :

// node_modules/bootstrap/.../bootstrap.js

function ($) {

// ...

} (require('jquery'))

Yea... it basically rewrites the code so that it's written correctly! And so suddenly, Bootstrap

requires the same jquery instance that we're using! This makes jQuery plugins work

beautifully.

 Tip

Not all jQuery plugins have this problem: some do behave properly out-fo-the-box.

Handling Legacy Template Code

Oh, but there's one other jQuery legacy situation I want to mention. If you're upgrading an

existing app to Webpack, then you might not be able to move all of your JavaScript out of your

templates at once. And that JavaScript probably needs jQuery. Here's my recommendation:

remove jQuery from the base layout like we've already done. But then, in your layout.js file,

require jquery and add: global.$ = $.

// ...

const $ = require('jquery');

global.$ = $;

require('bootstrap');

// ...

This global variable is special to Webpack - well... it's technically a Node thing, but that's not

important. The point is, when you do this, it creates a global $ variable, which means that any

JavaScript in your templates will be able to use it - as long as you make sure your code is

included after your layout.js script tag.

Later, you should totally remove this when your code is refactored. But, it's a nice helper for

upgrading.

Next, let's talk about how CSS fits into all of this!

Chapter 7: Require CSS!?

Oh, before we talk about CSS, I forgot to mention that these public/build files do not need

to be committed to your repository: we can rebuild them whenever we want from the source

files. So inside .gitignore , add /public/build/* to make sure we don't commit them:

.gitignore

 // ... line 1

2

 // ... lines 3 - 19

Ok, onto something more important! Go to /login . Thanks to some JavaScript, if you type a

really long username, a message pops up. The styling for this message comes from

login.css . This is included in the template: login.html.twig :

templates/bundles/FOSUserBundle/Security/login.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 72

This makes sense: we have a script tag for login.js and also a link tag for login.css . But

remember: I want you to start thinking about your JavaScript as an application... an application

that can require its dependencies. And... isn't this CSS really a dependency of our app? I mean,

if we forgot to include the CSS on this page, the application wouldn't break exactly... but it would

look horrible! Honestly, it would look like I designed it.

What I'm saying is: wouldn't it be cool if we could require CSS from right inside our JavaScript?

Requiring CSS

/public/build/*

{% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('assets/css/login.css') }}" />

{% endblock %}

{% block javascripts %}

 <script src="{{ asset('build/login.js') }}"></script>

{% endblock %}

Whelp... surprise! We can! Inside login.js , add require('../css/login.css') :

public/assets/js/login.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 24

We don't need to assign this to any variable.

So... what the heck does that do? Does that somehow magically embed that CSS onto the

page? Well, it's not that magic. Look inside the build/ directory - you may need to right click

and select "Synchronize" to update it. Woh! Suddenly, there is a new login.css file... which

contains all of the stuff from our source login.css :

const $ = require('jquery');

require('../css/login.css');

public/assets/css/login.css

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

.wrapper {

margin-top: 80px;

margin-bottom: 20px;

}

.form-signin {

 max-width: 420px;

 padding: 30px 38px 66px;

 margin: 0 auto;

 background-color: #eee;

 border: 3px dotted rgba(0,0,0,0.1);

 }

.form-signin-heading {

 text-align:center;

 margin-bottom: 30px;

}

.form-control {

 position: relative;

 font-size: 16px;

 height: auto;

 padding: 10px;

}

input[type="text"] {

 margin-bottom: 0px;

 border-bottom-left-radius: 0;

 border-bottom-right-radius: 0;

}

input[type="password"] {

 margin-bottom: 20px;

 border-top-left-radius: 0;

 border-top-right-radius: 0;

}

.colorgraph {

 height: 7px;

 border-top: 0;

 background: #c4e17f;

 border-radius: 5px;

 background-image: -webkit-linear-gradient(left, #c4e17f, #c4e17f 12.5%,

#f7fdca 12.5%, #f7fdca 25%, #fecf71 25%, #fecf71 37.5%, #f0776c 37.5%,

#f0776c 50%, #db9dbe 50%, #db9dbe 62.5%, #c49cde 62.5%, #c49cde 75%,

#669ae1 75%, #669ae1 87.5%, #62c2e4 87.5%, #62c2e4);

44

45

46

47

48

49

50

51

52

53

54

55

56

Here's what's happening: we point Webpack at our login entry file: login.js :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 16

17

 // ... lines 18 - 21

Then, it parses all of the require statements inside:

public/assets/js/login.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 24

For any required JS files, it puts them in the final login.js . But it also parses the CSS files...

and puts any CSS it finds into a final file - called login.css .

Actually, it's a bit confusing: the name login.css comes from the name of the entry: login :

 background-image: -moz-linear-gradient(left, #c4e17f, #c4e17f 12.5%,

#f7fdca 12.5%, #f7fdca 25%, #fecf71 25%, #fecf71 37.5%, #f0776c 37.5%,

#f0776c 50%, #db9dbe 50%, #db9dbe 62.5%, #c49cde 62.5%, #c49cde 75%,

#669ae1 75%, #669ae1 87.5%, #62c2e4 87.5%, #62c2e4);

 background-image: -o-linear-gradient(left, #c4e17f, #c4e17f 12.5%,

#f7fdca 12.5%, #f7fdca 25%, #fecf71 25%, #fecf71 37.5%, #f0776c 37.5%,

#f0776c 50%, #db9dbe 50%, #db9dbe 62.5%, #c49cde 62.5%, #c49cde 75%,

#669ae1 75%, #669ae1 87.5%, #62c2e4 87.5%, #62c2e4);

 background-image: linear-gradient(to right, #c4e17f, #c4e17f 12.5%,

#f7fdca 12.5%, #f7fdca 25%, #fecf71 25%, #fecf71 37.5%, #f0776c 37.5%,

#f0776c 50%, #db9dbe 50%, #db9dbe 62.5%, #c49cde 62.5%, #c49cde 75%,

#669ae1 75%, #669ae1 87.5%, #62c2e4 87.5%, #62c2e4);

}

.login-long-username-warning {

 color: #8a6d3b;

 background-color: #fcf8e3;

 padding: 15px;

 margin-bottom: 10px;

 border: 1px solid #faebcc;

 border-radius:4px;

}

Encore

 .addEntry('login', './public/assets/js/login.js')

;

const $ = require('jquery');

require('../css/login.css');

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 16

17

 // ... lines 18 - 21

Yep, each entry will cause one JavaScript file to be built and - if any of that JavaScript requires

a CSS file - then it will also cause a CSS file to be created with the same name.

Of course, to use this in the template, we still need one link tag pointed to build/login.css :

templates/bundles/FOSUserBundle/Security/login.html.twig

 // ... lines 1 - 4

5

 // ... lines 6 - 7

8

9

 // ... lines 10 - 72

Let's try it - refresh! If you type a long name... it works! And... bonus time! When we talk about

creating a production build later, this CSS file will automatically be minified.

Requiring the Layout CSS

So let's do this everywhere. Open layout.js and also the base layout: base.html.twig .

Look at the top: we have a few css files, the first is main.css :

Encore

 .addEntry('login', './public/assets/js/login.js')

;

{% block stylesheets %}

 <link rel="stylesheet" href="{{ asset('build/login.css') }}" />

{% endblock %}

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 106

107

In layout.js , require this: ../css/main.css :

public/assets/js/layout.js

 // ... lines 1 - 3

4

5

 // ... lines 6 - 10

As soon as we hit save, synchronize the build directory again... Yes! We have a new

layout.css file! In base.html.twig , update the link tag to use this:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

 // ... lines 12 - 13

14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 106

107

Yep... everything still looks fine.

Handling Images

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="{{ asset('assets/css/main.css') }}" rel="stylesheet"

/>

 {% endblock %}

</head>

</html>

require('bootstrap');

require('../css/main.css');

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="{{ asset('build/layout.css') }}" rel="stylesheet" />

 {% endblock %}

</head>

</html>

But... wait! Something amazing just happened! Look inside main.css . Woh! We're referencing

a background image: ../images/dumbell-mini.png :

public/assets/css/main.css

 // ... lines 1 - 7

8

 // ... lines 9 - 10

11

 // ... line 12

13

 // ... lines 14 - 78

That's a problem! Why? Because the final file lives in a completely different directory, so that

../ path will break!

Actually... it's not a problem! Webpack is amazing! It parses our CSS looking for any

background images or fonts. When it finds one, it moves it into a build/images/ directory

and rewrites the path inside the final CSS file to point there.

 Tip

The file-loader has esModule: true by default since v5.0.0. If the generated URL

looks like [object Module] - you will need to set esModule to false :

// webpack.config.js

Encore

 // ...

 .configureUrlLoader({

 images: {

 esModule: false

 }

 })

 // ...

The point is: all we need to do is write our CSS files correctly and... well... Webpack takes care

of the rest!

Requiring Bootstrap & FontAwesome CSS

.mini-dumbbell {

 background: url('../images/dumbbell-mini.png') center center no-

repeat;

}

We're on a roll! There are two CSS files left in base.html.twig : Bootstrap and

FontAwesome:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

13

 // ... line 14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 106

107

You know the drill: require this! Remove the Bootstrap link tag first:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

 // ... lines 13 - 14

15

 // ... lines 16 - 17

18

 // ... lines 19 - 106

107

In layout.js , above main.css , so that our CSS overrides their stuff, add require() ...

um... require... what? If we just require('bootstrap') , that will require the JavaScript file!

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link

href="https://netdna.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"

rel="stylesheet" />

 <link href="https://maxcdn.bootstrapcdn.com/font-

awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet"

integrity="sha384-

wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN"

crossorigin="anonymous" />

 {% endblock %}

</head>

</html>

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link

href="https://netdna.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"

rel="stylesheet" />

 {% endblock %}

</head>

</html>

So... how can we include CSS files? Look in the node_modules/ directory... and scroll down

to find bootstrap/ . Ah, ok. Inside, there is a dist/ directory, then css/ and

bootstrap.css .

A little bit of explanation: when you require the name of a module, Node reads a special key in

that package's package.json file called main to figure out which file to actually require. But,

if you want to require a specific file... just do it: bootstrap/dist/css/bootstrap.css :

public/assets/js/layout.js

 // ... lines 1 - 3

4

5

6

 // ... lines 7 - 11

This time, we don't need to make any other changes to base.html.twig : we already have a

link tag for layout.css , which has everything we need:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

 // ... line 12

13

14

 // ... lines 15 - 16

17

 // ... lines 18 - 105

106

To prove it, go back and refresh! It's still beautiful!

Yep, the built layout.css now has Bootstrap inside. And actually, Bootstrap itself references

some fonts... and hey! There are now fonts in the build/ directory too! Those are handled just

like background images.

Ok: one more CSS file to remove: FontAwesome. It's getting easy now! Remove the link tag

from the layout:

require('bootstrap');

require('bootstrap/dist/css/bootstrap.css');

require('../css/main.css');

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="{{ asset('build/layout.css') }}" rel="stylesheet" />

 {% endblock %}

</head>

</html>

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

 // ... line 13

14

 // ... lines 15 - 16

17

 // ... lines 18 - 105

106

Then, install that library:

yarn add font-awesome@4 --dev

I added @4 to make sure we get the version compatible with this project. Oh, and how did I

know to use font-awesome as the exact library name? I cheated: I already used npms.io

before recording to find it.

Back in layout.js , require font-awesome . Oh, but we need to find the exact file... in

node_modules/font-awesome ... ah! It looks like css/font-awesome.css - add that to

the require:

public/assets/js/layout.js

 // ... lines 1 - 3

4

5

6

7

 // ... lines 8 - 12

And Webpack is happy! Try it! Find the site and refresh! We still have our Bootstrap CSS and...

yes! Our little user icon from FontAwesome is there! And on the homepage... yep! Those trash

icons are from FontAwesome too!

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="https://maxcdn.bootstrapcdn.com/font-

awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet"

integrity="sha384-

wvfXpqpZZVQGK6TAh5PVlGOfQNHSoD2xbE+QkPxCAFlNEevoEH3Sl0sibVcOQVnN"

crossorigin="anonymous" />

 {% endblock %}

</head>

</html>

require('bootstrap');

require('bootstrap/dist/css/bootstrap.css');

require('font-awesome/css/font-awesome.css');

require('../css/main.css');

https://npms.io/

Now, our base.html.twig file looks great! We have one CSS file and one JS file:

templates/base.html.twig

1

2

3

 // ... lines 4 - 10

11

12

13

 // ... lines 14 - 15

16

17

18

 // ... lines 19 - 96

97

 // ... lines 98 - 100

101

102

103

104

105

And all our dependencies are being required internally.

<!DOCTYPE html>

<html lang="en">

<head>

 {% block stylesheets %}

 <link href="{{ asset('build/layout.css') }}" rel="stylesheet" />

 {% endblock %}

</head>

<body>

{% block javascripts %}

 <script src="{{ asset('build/layout.js') }}"></script>

{% endblock %}

</body>

</html>

Chapter 8: Handling Images with the CopyPlugin

Bonus! A really cool side-effect of using Webpack is that none of these files in the assets/

directory need to be public anymore! I mean they live in the public directory currently... but the

user never needs to access them directly: Webpack processes and moves them into build/ .

To celebrate, let's move assets/ out of the public/ directory and into the root of our project.

We don't need to do this... but if something doesn't need to be publicly accessible, why make it

public?

This change breaks almost nothing. The only things we need to update are the paths in

webpack.config.js :

webpack.config.js

 // ... lines 1 - 2

3

 // ... lines 4 - 9

10

11

12

 // ... lines 13 - 16

17

 // ... lines 18 - 21

After making that change, restart Encore!

yarn run encore dev --watch

And... refresh! Woohoo! Wait... there's a missing image! Bah! I was lying! There is one file that

still needs to be publicly accessible!

Open index.html.twig ... ah! We have a good, old-fashioned img tag that references one

of the images in the assets/ directory:

Encore

 .addEntry('rep_log', './assets/js/rep_log.js')

 .addEntry('login', './assets/js/login.js')

 .addEntry('layout', './assets/js/layout.js')

;

templates/lift/index.html.twig

 // ... lines 1 - 2

3

4

 // ... lines 5 - 34

35

36

37

38

 // ... line 39

40

 // ... lines 41 - 42

43

44

45

46

 // ... lines 47 - 59

And... whoops! It's not public anymore. My bad!

This is one of the few cases - maybe the only case - where we need to reference public images

from outside a file that Webpack processes. The simple problem is that Webpack doesn't know

that it needs to move this file!

Of course, there's an easy fix: we could just move this one file back into the public/ directory.

But... that sucks: I'd rather keep all of my assets in one place.

Installing copy-webpack-plugin

 Tip

Great news! The latest version of Encore has a copyFiles() ! You can use this instead of

installing this plugin.

To do this, we can take advantage of a Webpack plugin that can copy the file for us. Google for

copy-webpack-plugin to find its GitHub page. Encore gives you a lot of features... but it

doesn't give you everything. But... no worries! We're using Webpack under-the-hood. So if you

find a Webpack plugin you want, you can totally use it!

{% block body %}

 <div class="row">

 <div class="col-md-5">

 <div class="leaderboard">

 <h2 class="text-center">

 <img class="dumbbell" src="{{

asset('assets/images/dumbbell.png') }}" />

 </h2>

 </div>

 </div>

 </div>

{% endblock %}

https://github.com/webpack-contrib/copy-webpack-plugin

Side note, Encore will have a copy() method soon. Then you'll be able to do this without a

plugin. Yay! But, this is still a great example of how to extend Webpack beyond Encore.

Anyways, install the plugin first. Notice that they use npm . I'm going to use yarn . So copy the

name of that plugin, find your terminal, and run:

yarn add copy-webpack-plugin --dev

Adding Custom Webpack Config

To use the plugin, we need to require it at the top of the Webpack config file. No problem:

webpack.config.js

1

2

 // ... lines 3 - 27

And then below, um.... config = ... and plugins: ... what the heck does this mean?

Well... earlier, I told you that webpack.config.js normally returns a big configuration object.

And Encore is just a tool to help generate that config. In fact, at the bottom, we can see what

that config looks like if we want! Just console.log(module.exports) .

Then, restart Encore:

yarn run encore dev --watch

Woh! There's our config! Actually, it's not so scary: there are keys for entry , output ,

module , plugins and a few other things.

For example, see the plugins key? Back on their docs, that is what they're referring to: they

want you to add their plugin to that config key.

Ok, so how can we do that? Well, you could always just add it manually:

module.exports.plugins.push() and then the plugin. Yep: you could literally add

var Encore = require('@symfony/webpack-encore');

const CopyWebpackPlugin = require('copy-webpack-plugin');

something to the plugins array!

But, fortunately, Encore gives you an easier way to modify the most common things. In this

case, use addPlugin() and then new CopyWebpackPlugin() . Pass this an array - this

will soon be the paths it should copy:

webpack.config.js

 // ... line 1

2

3

4

 // ... lines 5 - 18

19

 // ... lines 20 - 21

22

23

 // ... lines 24 - 27

Copying Images into build/

But, before we fill that in... let's think about this. I don't need to copy all of my images to the

build/ directory... just one of them right now. So let's create a new directory called static/

and move any files that need to be copied into that directory, like dumbell.png .

In the CopyWebpackPlugin config, set from to ./assets/static and to to just

static :

webpack.config.js

 // ... line 1

2

3

4

 // ... lines 5 - 18

19

20

21

22

23

 // ... lines 24 - 27

This will copy to the output directory /static .

const CopyWebpackPlugin = require('copy-webpack-plugin');

Encore

 .addPlugin(new CopyWebpackPlugin([

]))

;

const CopyWebpackPlugin = require('copy-webpack-plugin');

Encore

 .addPlugin(new CopyWebpackPlugin([

 // copies to {output}/static

 { from: './assets/static', to: 'static' }

]))

;

Ok, go restart Encore!

yarn run encore dev --watch

Once the build finishes... inside public/build ... yes! We have a new static directory. It's

nothing fancy, but this is a nice way to move files so that we can reference them publicly in a

template:

templates/lift/index.html.twig

 // ... lines 1 - 2

3

4

 // ... lines 5 - 34

35

36

37

38

 // ... line 39

40

 // ... lines 41 - 42

43

44

45

46

 // ... lines 47 - 59

There's one more reference in the login template: search for "bell" and... update this one too:

templates/bundles/FOSUserBundle/Security/login.html.twig

 // ... lines 1 - 16

17

18

19

20

21

 // ... lines 22 - 67

68

69

70

71

{% block body %}

 <div class="row">

 <div class="col-md-5">

 <div class="leaderboard">

 <h2 class="text-center">

 <img class="dumbbell" src="{{

asset('build/static/dumbbell.png') }}" />

 </h2>

 </div>

 </div>

 </div>

{% endblock %}

{% block fos_user_content %}

 <div class="container">

 <div class="wrapper">

 <form action="{{ path("fos_user_security_check") }}"

method="post" class="form-signin">

 <h3><img class="dumbbell" src="{{

asset('build/static/dumbbell.png') }}">Login! Start Lifting!</h3>

 </form>

 </div>

 </div>

{% endblock fos_user_content %}

Try it! Find your browser and refresh. There it is!

Next, let's make our CSS sassier... with... Sass of course!

Chapter 9: Sass & Sourcemaps

Our layout.js file requires main.css :

assets/js/layout.js

 // ... lines 1 - 6

7

 // ... lines 8 - 12

That's cool... I guess... if you like using boring old CSS. But I want to be more Hipster, so let's

use Sass instead. Well, I could use Stylus to be super hipster... and Encore does support that,

but let's use something a bit more familiar.

To start, rename the file to main.scss . Now, we can use a fancier syntax for these pseudo-

selectors:

assets/css/main.scss

 // ... lines 1 - 16

17

 // ... lines 18 - 26

27

28

29

30

31

32

 // ... lines 33 - 77

OooooOoOooOooo.

Obviously, the build is failing because, in layout.js , that file path is wrong! Change it to

main.scss :

assets/js/layout.js

 // ... lines 1 - 6

7

 // ... lines 8 - 12

So... does it already work?

require('../css/main.css');

.btn-login {

 &:hover,&:focus {

 color: #fff;

 background-color: #53A3CD;

 border-color: #53A3CD;

 }

}

require('../css/main.scss');

Activating Optional Features

No! On the watch tab of our terminal, it failed when loading main.scss . Out-of-the-box,

Encore cannot process Sass files. But, it tells you how to fix this! We just need to enable it

inside our config & install some extra packages. Remember: Encore is full of features. But to

stay light, it doesn't enable everything automatically. Instead, you are in control: enable what

you need, and Encore will tell you what to do. It's kinda cool!

Go back to webpack.config.js and add .enableSassLoader() :

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 23

24

25

 // ... lines 26 - 29

Then, back on your terminal, copy the yarn add line, stop Encore with Ctrl+C , and paste!

yarn add sass-loader node-sass --dev

Let it do its thing, then... restart Encore!

yarn run encore dev --watch

No errors! To prove it works, move over to your browser and... refresh! It still looks great! Well,

most importantly, on the login page, when we hover of the button, it does have that styling.

Encore Versus Webpack Concepts

There's one thing I want you to notice: the name of this method: enableSassLoader() :

Encore

 .enableSassLoader()

;

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 23

24

25

 // ... lines 26 - 29

"Loader" is a Webpack concept. Encore tries to make Webpack as easy as possible, but it

reuses Webpack's language and terms whenever possible. And that's important! If you ever

need to do something custom with Webpack, it's usually pretty easy to figure out how that fits

into Encore.

Also, we're requiring bootstrap.css right now:

assets/js/layout.js

 // ... lines 1 - 4

5

 // ... lines 6 - 12

But, with Sass support, you could instead import Bootstrap's Sass files directly. The advantage

is that you can override Bootstrap's Sass variables and take control of colors, sizes and other

stuff. To do that with Bootstrap 3, you'll need the bootstrap-sass package. For Bootstrap 4,

the Sass files are included in the main package.

Sourcemaps!

Let's fix one more problem quickly: sourcemaps! If you click on a row, we have some

console.log() debugging code. But, where does that code come from? Well, if you click on

the rep_log.js link, apparently it's coming from line 197. But, that's a lie! Well, sort of. This is

the built rep_log.js file, not the source file.

And this highlights a classic problem: when you build many files into one file, debugging gets

harder because error messages and other info don't point to the real line number or the original

filename.

Let's fix that! Back in webpack.config.js , add .enableSourceMaps() with an argument:

!Encore.isProduction() :

Encore

 .enableSassLoader()

;

require('bootstrap/dist/css/bootstrap.css');

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 24

25

26

 // ... lines 27 - 30

This enables extra debugging info - called sourcemaps - whenever we are creating a

development build.

Because we just updated the Webpack config, restart Encore:

yarn run encore dev --watch

Thanks to this, all of our JavaScript and CSS files now have some extra content at the bottom

that hints to our browser where the source content came from. This time, when I click a row, in

the console, awesome! It's coming from RepLogApp.js line 104. That is the real spot.

Oh, by the way: if you don't enable sourcemaps, you may still see some sourcemap info at the

bottom of your CSS files during development. That's just an internal quirk - it won't be there on

production.

Encore

 .enableSourceMaps(!Encore.isProduction())

;

Chapter 10: Integrating FOSJsRoutingBundle

Open Components/RepLogApp.js and search for Routing :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 8

9

 // ... lines 10 - 43

44

45

46

 // ... lines 47 - 50

51

52

 // ... lines 53 - 194

195

 // ... lines 196 - 214

Guess what? This Routing variable is a global variable. Boo! It's our last one. In

templates/ , open the base layout:

templates/base.html.twig

 // ... lines 1 - 96

97

98

99

 // ... lines 100 - 101

102

 // ... lines 103 - 106

Other than a polyfill - which we won't talk about - there are only two script tags left. These give

us the Router variable and they come from FOSJsRoutingBundle: a really cool bundle that

allows you to generate URLs from Symfony routes in JavaScript.

Our goal is clear: refactor our code so that we can require the Router instead of relying on the

global variable.

class RepLogApp {

 loadRepLogs() {

 $.ajax({

 url: Routing.generate('rep_log_list'),

 })

 }

}

{% block javascripts %}

 <script src="{{ asset('bundles/fosjsrouting/js/router.js') }}">

</script>

 <script src="{{ path('fos_js_routing_js', { callback:

'fos.Router.setData' }) }}"></script>

{% endblock %}

Requiring the router.js File

The first interesting thing is that this is not a Node package. Nope, it's a normal PHP package

that happens to have a JavaScript file inside. But, that doesn't really make any difference...

except that the path for it is ugly: it lives in

vendor/friendsofsymfony/jsrouting-bundle/Resources/public/js/router.js .

Wow! Ok then: const Routing = require() , then go up a few directories and follow the

path:

vendor/friendsofsymfony/jsrouting-bundle/Resources/public/js/router.js :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 5

6

 // ... lines 7 - 215

Simple enough! Let's try it! In your browser, refresh! Bah! Error!

“The route rep_log_list does not exist”

Booo! This error comes from inside the Router. Here's what's going on: this JavaScript library is

more complex than most. The first script tag gives us the Router variable. But the second

executes a dynamic endpoint that fetches a JSON list of the route information and then sets that

on the router.

When we simply require the router... we do get the Router object... but it has no routes! So the

question is: how can we get the dynamic route info so that it can be set into the router?

Actually, this is possible! If you look at the Usage section of the bundle's docs, it talks about how

to integrate with Webpack Encore. Basically, by running a bin/console command, you can

dump your route information to a static JSON file. Then, you can require that JSON from

Webpack and set it on the Router. Oh, and don't worry about this import syntax - it's basically

the same as require() , and we'll talk about it next.

So this is really cool! It shows how you can even require JSON files from JavaScript! But... it

has a downside: each time you add a new route, you need to re-run the command. That can be

a pain during development. It's still a great option - and is a bit faster on production - but it does

have that weakness.

const Routing = require('../../../vendor/friendsofsymfony/jsrouting-

bundle/Resources/public/js/router.min.js');

https://symfony.com/doc/master/bundles/FOSJsRoutingBundle/usage.html

Creating the Fake Router Module

And there is another option. It's not quite as fancy or awesome... but it's easier. Inside

assets/js/Components , create a new file called Routing.js . Inside, um, just say,

module.exports = window.Routing :

assets/js/Components/Routing.js

1

2

3

4

5

Yep! We are going to continue using the global variable. But now, we can at least require this

file from everywhere else so that our code looks more responsible:

const Routing = require('./Routing') :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 5

6

 // ... lines 7 - 215

And now, when we refresh, it works. The cool thing about this hacky solution is that if you want

to change to the better solution later, it's easy! Just put the correct code in Router.js , and

everything will already be using it. Nice!

/**

 * For now, we rely on the router.js script tag to be included

 * in the layout. This is just a helper module to get that object.

 */

module.exports = window.Routing;

const Routing = require('./Routing');

Chapter 11: ES6 Import & Export

If you watched episode 2 of our JavaScript series, then you know that ECMAScript is the official

name of the JavaScript language standard and that ECMAScript version 6 - or ES6 - introduced

the idea of modules. Modules are what we've been taking advantage of this entire tutorial:

exporting and requiring values from different files.

But... surprise! In ECMAScript, the require() function does not exist. Whaaaat?! The

require() statement was basically invented by Node, back before ES6: Node needed a way

to require files, so they invented their own way. Later, ECMAScript decided to make the idea of

modules part of the standard language. But when they did, they used a different keyword than

require! Yep, there are two valid syntaxes for working with modules! But... it's not a big deal:

they work exactly the same, except that the official syntax has one small advantage.

Hello import & export

Let's use the official module syntax. Instead of saying const Helper = require() , say

import Helper from :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 2

3

 // ... lines 4 - 215

It's that simple! And it doesn't change anything. In RepLogHelper , we also need to change our

export to use the new syntax. Instead of module.exports = Helper , use

export default Helper :

assets/js/Components/RepLogHelper.js

 // ... lines 1 - 33

34

We'll talk about what the default part means later. But for now, it's always export default and

then what you want to export.

import Helper from './RepLogHelper';

export default Helper;

https://knpuniversity.com/screencast/javascript-es6

You can mix the two syntaxes - require and import - to a certain point, but you may run into

some problems. Your best bet is to pick your favorite - mine is import and export - and use

it everywhere. So let's update everything: import $ from 'jquery' ,

import swal from 'sweetalert2' and import Routing from './Routing' :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 2

3

4

5

6

 // ... lines 7 - 215

At the bottom, use export default RepLogApp :

assets/js/Components/RepLogApp.js

 // ... lines 1 - 213

214

Cool! RepLogHelper is already ok, and in Routing.js , change this to:

export default window.Routing :

assets/js/Components/Routing.js

 // ... lines 1 - 4

5

Keep going for the 3 entry files: import $ from 'jquery' :

assets/js/layout.js

 // ... lines 1 - 2

3

 // ... lines 4 - 12

If you don't need a return value, it's even easier: just import 'bootstrap' . Repeat that for

the CSS files:

assets/js/layout.js

 // ... lines 1 - 2

3

4

5

6

7

 // ... lines 8 - 12

import Helper from './RepLogHelper';

import $ from 'jquery';

import swal from 'sweetalert2';

import Routing from './Routing';

export default RepLogApp;

export default window.Routing;

import $ from 'jquery';

import $ from 'jquery';

import 'bootstrap';

import 'bootstrap/dist/css/bootstrap.css';

import 'font-awesome/css/font-awesome.css';

import '../css/main.scss';

In login.js , import jQuery again, then import the CSS file:

assets/js/login.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 24

And one more time in rep_log.js : import jQuery and import RepLogApp :

assets/js/rep_log.js

 // ... lines 1 - 2

3

4

 // ... lines 5 - 10

And... assuming I didn't mess anything up, our build should still be happy! Check out the

terminal: yes! No errors. Move over to your browser and check it! Looks great!

Importing Named Modules

And... yea! That's it! Just two nearly-identical syntaxes... because... more is better?! The biggest

reason I want you to know about import and export is so that you know what it means when

you see it in code or documentation.

But, there is one small advantage to import and export , and it relates to this default

keyword:

assets/js/Components/RepLogApp.js

 // ... lines 1 - 213

214

Usually, you'll want to export just one value from a module. In that case, you say export

default and then you receive this value when using import .

But... technically... you can export multiple things from a module, as long as you give each of

them a name. For example, instead of export default Helper , we could export an object

with a Helper key and a foo key:

import {Helper, foo} from './RepLogHelper';

import $ from 'jquery';

import '../css/login.css';

import $ from 'jquery';

import RepLogApp from './Components/RepLogApp';

export default RepLogApp;

Then, the import has a slightly different syntax where you say explicitly which of those keys you

want to import.

I don't usually do this in my code, but there is one case where it can be helpful. Imagine you're

using a huge external library - like lodash - which is really just a collection of independent

functions. If that library exports its values correctly, you could import just the functions you need,

instead of importing the entire exported value:

import isEqual from 'lodash.isequal';

Then, at least in theory, thanks to a feature called "tree shaking", Webpack would realize that

you're only using a few parts of that library, and only include those in the final, compiled file. In

reality, this still seems a bit buggy: the unused code doesn't always get removed. But, the point

is this: import and export have a subtle advantage and are the ECMAScript standard. So,

use them!

Ok, it's time to find out how we can create a crazy-fast production build!

Chapter 12: Building for Production

I love our new setup! So it's time to talk about optimizing our build files for production. Yep, it's

time to get serious, and make sure our files are minified and optimized to kick some

performance butt!

Because, right now, if you check out the size of the build directory:

ls -la public/build

... yea! These files are pretty huge - rep_log.js is over 1 megabyte and so is layout.js ! If

you looked inside, you would find the problem immediately:

assets/js/login.js

 // ... lines 1 - 2

3

 // ... lines 4 - 24

jQuery is packaged individually inside each of these! That's super wasteful! Our users should

only need to download jQuery one time.

The Shared Entry

 Tip

The createdSharedEntry() feature still works great, but in the latest version of Encore,

there is a new way to solve this problem called splitChunks() . Read about it here:

https://symfony.com/doc/current/frontend/encore/split-chunks.html

No problem! Webpack has an awesome solution. Open webpack.config.js . Move the

layout entry to the top - though, order doesn't matter. Now, change the method to

createSharedEntry() :

import $ from 'jquery';

https://symfony.com/doc/current/frontend/encore/split-chunks.html

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 10

11

 // ... lines 12 - 25

26

 // ... lines 27 - 30

Before we talk about this, move back to your terminal and restart Encore:

yarn run encore dev --watch

Then, I'll open a new tab - I love tabs! - and, when it finishes, check the file sizes again:

ls -la public/build

Woh! rep_log.js is down from 1 megabyte to 300kb! layout.js is still big because it does

still contain jQuery. But login.js - which was almost 800kb is now... 4!

What is this magical shared entry!? To slightly over-simplify it, each project should have exactly

one shared entry. And its JS file and CSS file should be included on every page.

When you set layout.js as a shared entry, any modules included in layout.js are not

repeated in other files. For example, when Webpack sees that jquery is required by

login.js , it says:

“Hold on! jquery is already included in layout.js - the shared entry. So, I don't need to

also put it in login.js .”

It's a great solution to the duplication problem: if you have a library that is commonly used, just

make sure that you import it in layout.js , even if you don't need it there. You can experiment

with the right balance.

The manifest.js File

Encore

 .createSharedEntry('layout', './assets/js/layout.js')

;

As soon as you do this, if you refresh, it works! I'm kidding - you'll totally get an error:

“webpackJsonp is not defined”

To fix that, in your base layout, right before layout.js , add one more script tag. Point it to a

new build/manifest.js file:

templates/base.html.twig

 // ... lines 1 - 96

97

 // ... lines 98 - 100

101

102

103

 // ... lines 104 - 107

The reason we need to do this is... well.. a bit technical. But basically, this helps with long-term

caching, because it allows your giant layout.js file to change less often between deploys.

Production Build

Ok, this is great, but the files are still pretty big because they're not being minified. How can we

tell Encore to do that? In your terminal, run:

yarn run encore production

That's it! This will take a bit longer: there's more magic happening behind the scenes. When it

finishes, go back to your first open tab and run:

ls -la public/build

Let's check out the file sizes! The development rep_log.js that was 310kb is down to 74!

Layout went from about 1Mb to 125kb. The CSS files are also way smaller. Yep, building for

production is just one command: Encore handles all the details.

{% block javascripts %}

 <script src="{{ asset('build/manifest.js') }}"></script>

 <script src="{{ asset('build/layout.js') }}"></script>

{% endblock %}

Adding Shortcut scripts

Oh, and here's a trick to be even lazier. Open package.json . I'm going to paste a new

script section:

package.json

1

2

 // ... lines 3 - 11

12

13

14

15

16

17

18

19

This gives you different shortcut commands for the different ways that you'll run Encore. Oh, we

didn't talk about the dev-server , but it's another option for local development.

Anyways, now, in the terminal, we can just say:

yarn watch

Or any of the other script commands - like yarn build for production.

How to Deploy

Talking about production, there's one last big question we need to answer: how the heck do you

deploy your assets to production? Do we need to install Node on the production server?

The answer is.... it depends. It depends on how sophisticated your deployment system is.

Honestly, if you have a very simple deploy system - like a simple script, or maybe even some

commands you run manually - then the easiest option is to install Node and yarn on your server

and run encore production on your server after pulling down the latest files.

{

 "devDependencies": {

 },

 "scripts": {

 "dev-server": "encore dev-server",

 "dev": "encore dev",

 "watch": "encore dev --watch",

 "build": "encore production"

 }

}

I know: this isn't a great solution: it's a bummer to install Node just for this reason. But, it is a

valid option and totally simple.

A better solution is to run Encore on a different machine and then send the final, built files to

your server. This highlights an important point: after you execute Encore, 100% of the files you

need live in public/build . So, for example, after you execute:

yarn run encore production

you could send the public/build directory to your production machine and it would work

perfectly. If you have a "build" server, that's a great place to run this command. Or, if you

watched our Ansistrano Tutorial, you could run Encore locally, and use the copy module to

deploy those files.

If you have any questions on your specific situation, you can ask us in the comments.

https://knpuniversity.com/screencast/ansistrano

Chapter 13: Asset Versioning & Cache Busting

There is one last thing I want to talk about, and it's one of my favorite features in Encore. Here's

the question: how can we version our assets? Or, even more simple, how can we bust browser

cache? For example, right now, if I change something in RepLogApp.js , then of course

Webpack will create an updated rep_log.js file. But, when an existing user comes back to

our site, their browser might use the old, cached version! Lame!

Enabling Versioning

This is a classic problem. But with Encore, we can solve it beautifully and automatically! In

webpack.config.js , first add .cleanupOutputBeforeBuild() :

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

 // ... line 27

28

 // ... lines 29 - 32

That's a nice little function that will empty the public/build directory whenever you run

Encore. Then, here's the key: .enableVersioning() :

webpack.config.js

 // ... lines 1 - 3

4

 // ... lines 5 - 25

26

27

28

 // ... lines 29 - 32

That's it! Because we just changed our config, restart Encore:

Encore

 .cleanupOutputBeforeBuild()

;

Encore

 .cleanupOutputBeforeBuild()

 .enableVersioning()

;

yarn watch

Now look at the build/ directory. Woh! Suddenly, all of our files have a hash in the filename!

The hash is based on the file's contents: so whenever the file changes, it gets a new filename.

This is awesome! Now when rep_log.js changes, it will have a new filename. And when we

deploy to production, the user's browser will see the new filename and load it, instead of using

the old, cached version.

Versioned Filenamed with manifest.json

Perfect! Except... we just broke everything. Find your browser and refresh. Yep! It's horrible! And

this makes sense: in the base layout, our script tag simply points to build/layout.js :

templates/base.html.twig

 // ... lines 1 - 96

97

 // ... lines 98 - 101

102

103

 // ... lines 104 - 107

But this is not the filename anymore - it's missing the hash part!

Of course, we could type the filename manually here. But, gross! Then, every time we updated

a file, we would need to update its script tag.

Here's the key to fix this. Behind the scenes, as soon as we started using Encore, it generated a

manifest.json file automatically. This is a map from the source filename to the current

hashed filename! That's great! If we could somehow tell Symfony's asset() function to read

this and make the transformation, then, well... everything would work perfectly!

And... yea! That feature exists! Open config/packages/framework.yaml . Anywhere, but

I'll do it at the bottom, add assets: then json_manifest_path set to

%kernel.project_dir%/public/build/manifest.json :

{% block javascripts %}

 <script src="{{ asset('build/layout.js') }}"></script>

{% endblock %}

config/packages/framework.yaml

1

 // ... lines 2 - 35

36

37

This is a built-in feature that tells Symfony to look for a JSON file at this path, and to use it to

lookup the real filename. In other words... just, refresh! Yea, everything is beautiful again! Check

out the page source: it's using the hashed filename from the manifest file.

And if you change one of the files - like layout.js : add a console.log() ... as soon as we

do this, Webpack rebuilds. In the build/ directory - you might need to synchronize it, but yes!

It creates a new filename. When you refresh, the system automatically uses that inside the

source.

Long-Lived Expires Headers

This is free asset versioning and cache busting! If you want to get really crazy, you can also

now give your site a performance boost! To do that, you'll need to configure your web server to

set long-lived Expires header on any files in the /build directory.

Basically, by setting an Expires header, your web server can instruct the browser of each

user to cache any downloaded assets... forever! Then, when the user continues browsing your

site, it will load faster because their browser knows it's safe to use these files from cache. And of

course, when we do make a change to a file in the future, the browser will download it thanks to

its new filename.

The exact config is different in Nginx versus Apache, but it's a common thing to add. Google for

"Nginx expires header for directory".

OK guys, I hope, hope, hope you love Webpack Encore as much as I do! It has even more

features that we didn't talk about, like enableReactPreset() to build React apps or

enableVueLoader() for Vue.js. And we're adding new features all the time so that it's easier

to use front-end frameworks and enjoy some of the really amazing things that are coming from

the JavaScript world... without needing to read 100 blog posts every day.

So get out there and write amazing JavaScript! And I hope you'll stay with us for our next tutorial

about React.js & Symfony!

framework:

 assets:

 json_manifest_path:

'%kernel.project_dir%/public/build/manifest.json'

All right guys, seeya next time!

With <3 from SymfonyCasts

